引入环境传感器的鲁棒地形分类

T. Y. Kim, G. Sung, J. Lyou
{"title":"引入环境传感器的鲁棒地形分类","authors":"T. Y. Kim, G. Sung, J. Lyou","doi":"10.1109/SSRR.2010.5981562","DOIUrl":null,"url":null,"abstract":"This paper presents a vision-based off-road terrain classification method that is robust despite large environmental variations caused by seasonal or weather changes. In order to account for an overall image feature variation, we adopted environmental sensors, and to train a neural network based classifier, constructed a database according to environmental conditions. Robust classification could be achieved by selecting the training parameter set best suited for each environmental state. Also, we propose a hardware architecture that enables distributed parallel processing for real- time implementation of the present algorithm. Experimental results for real off-road images show that in spite of dissimilar conditions, degradation of classification performance could be minimized by replacing the nearest parameters.","PeriodicalId":371261,"journal":{"name":"2010 IEEE Safety Security and Rescue Robotics","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Robust terrain classification by introducing environmental sensors\",\"authors\":\"T. Y. Kim, G. Sung, J. Lyou\",\"doi\":\"10.1109/SSRR.2010.5981562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a vision-based off-road terrain classification method that is robust despite large environmental variations caused by seasonal or weather changes. In order to account for an overall image feature variation, we adopted environmental sensors, and to train a neural network based classifier, constructed a database according to environmental conditions. Robust classification could be achieved by selecting the training parameter set best suited for each environmental state. Also, we propose a hardware architecture that enables distributed parallel processing for real- time implementation of the present algorithm. Experimental results for real off-road images show that in spite of dissimilar conditions, degradation of classification performance could be minimized by replacing the nearest parameters.\",\"PeriodicalId\":371261,\"journal\":{\"name\":\"2010 IEEE Safety Security and Rescue Robotics\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Safety Security and Rescue Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSRR.2010.5981562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Safety Security and Rescue Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR.2010.5981562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种基于视觉的越野地形分类方法,该方法在季节或天气变化引起的大环境变化下仍然具有鲁棒性。为了考虑图像整体特征的变化,我们采用了环境传感器,并训练了基于神经网络的分类器,根据环境条件构建了数据库。通过选择最适合每种环境状态的训练参数集,可以实现鲁棒分类。此外,我们还提出了一种硬件架构,使分布式并行处理能够实时实现本算法。对真实非公路图像的实验结果表明,尽管条件不同,但通过替换最接近的参数可以最大限度地降低分类性能的退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust terrain classification by introducing environmental sensors
This paper presents a vision-based off-road terrain classification method that is robust despite large environmental variations caused by seasonal or weather changes. In order to account for an overall image feature variation, we adopted environmental sensors, and to train a neural network based classifier, constructed a database according to environmental conditions. Robust classification could be achieved by selecting the training parameter set best suited for each environmental state. Also, we propose a hardware architecture that enables distributed parallel processing for real- time implementation of the present algorithm. Experimental results for real off-road images show that in spite of dissimilar conditions, degradation of classification performance could be minimized by replacing the nearest parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信