端到端多尺度条件生成对抗网络图像去模糊

Fei Qi Fei Qi, Chen-Qing Wang Fei Qi
{"title":"端到端多尺度条件生成对抗网络图像去模糊","authors":"Fei Qi Fei Qi, Chen-Qing Wang Fei Qi","doi":"10.53106/199115992023063403017","DOIUrl":null,"url":null,"abstract":"\n For image deblurring, multi-scale approaches have been widely used as deep learning methods recently. In this paper, a novel multi-scale conditional generative adversarial network (CGAN) is proposed to make full use of image features, which outperforms most state-of-the-art methods. We define a generator network and a discriminator network. First of all, we use the multi-scale residual modules proposed in this paper as main feature extraction blocks, and add skip connections to extract multi-scale image features at a finer granularity in the generator network. Secondly, we construct PatchGAN as the discriminator network to enhance the local feature extraction capability. In addition, we combine the adversarial loss based on Wasserstein GAN with gradient penalty (WGAN-GP) theory with the content loss defined by perceptual loss as the total loss function, which is conducive to improving the consistency between the generated images and the ground-truth sharp images in content. The experimental results show that the method in this paper outperforms the state-of-the-art methods in visualization and quantitative results.\n \n","PeriodicalId":345067,"journal":{"name":"電腦學刊","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An End-to-End Multi-Scale Conditional Generative Adversarial Network for Image Deblurring\",\"authors\":\"Fei Qi Fei Qi, Chen-Qing Wang Fei Qi\",\"doi\":\"10.53106/199115992023063403017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n For image deblurring, multi-scale approaches have been widely used as deep learning methods recently. In this paper, a novel multi-scale conditional generative adversarial network (CGAN) is proposed to make full use of image features, which outperforms most state-of-the-art methods. We define a generator network and a discriminator network. First of all, we use the multi-scale residual modules proposed in this paper as main feature extraction blocks, and add skip connections to extract multi-scale image features at a finer granularity in the generator network. Secondly, we construct PatchGAN as the discriminator network to enhance the local feature extraction capability. In addition, we combine the adversarial loss based on Wasserstein GAN with gradient penalty (WGAN-GP) theory with the content loss defined by perceptual loss as the total loss function, which is conducive to improving the consistency between the generated images and the ground-truth sharp images in content. The experimental results show that the method in this paper outperforms the state-of-the-art methods in visualization and quantitative results.\\n \\n\",\"PeriodicalId\":345067,\"journal\":{\"name\":\"電腦學刊\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"電腦學刊\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53106/199115992023063403017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"電腦學刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/199115992023063403017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于图像去模糊,近年来多尺度方法作为深度学习方法得到了广泛的应用。本文提出了一种新的多尺度条件生成对抗网络(CGAN),以充分利用图像的特征,优于大多数现有的方法。我们定义了一个生成器网络和一个鉴别器网络。首先,我们使用本文提出的多尺度残差模块作为主要特征提取块,并在生成器网络中加入跳跃连接,以更细的粒度提取多尺度图像特征。其次,构建PatchGAN作为判别器网络,增强局部特征提取能力;此外,我们将基于Wasserstein GAN和梯度惩罚(WGAN-GP)理论的对抗损失与感知损失定义的内容损失作为总损失函数相结合,有利于提高生成的图像与内容上的地真锐利图像的一致性。实验结果表明,本文方法在可视化和定量结果方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An End-to-End Multi-Scale Conditional Generative Adversarial Network for Image Deblurring
For image deblurring, multi-scale approaches have been widely used as deep learning methods recently. In this paper, a novel multi-scale conditional generative adversarial network (CGAN) is proposed to make full use of image features, which outperforms most state-of-the-art methods. We define a generator network and a discriminator network. First of all, we use the multi-scale residual modules proposed in this paper as main feature extraction blocks, and add skip connections to extract multi-scale image features at a finer granularity in the generator network. Secondly, we construct PatchGAN as the discriminator network to enhance the local feature extraction capability. In addition, we combine the adversarial loss based on Wasserstein GAN with gradient penalty (WGAN-GP) theory with the content loss defined by perceptual loss as the total loss function, which is conducive to improving the consistency between the generated images and the ground-truth sharp images in content. The experimental results show that the method in this paper outperforms the state-of-the-art methods in visualization and quantitative results.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信