字母信息空间的一般处理和熵的积分表示

H. Umegaki
{"title":"字母信息空间的一般处理和熵的积分表示","authors":"H. Umegaki","doi":"10.2996/KMJ/1138844856","DOIUrl":null,"url":null,"abstract":"In this paper we shall clarify a topological structure of the alphabet-message space of the memory channel in information theory, and study the integral representation of entropy amount from a general view point of a certain generalized message space. In order to apply to the general theory of entropy, the present fashion will develop a message space into more general treatment, in which the basic space X will be assumed to be totally disconnected. As will be shown in §2, the alphabet-message space A is a totally disconnected compact space, and in § 3, a kind of theorem relative to sufficiency for a (/-field generated by a partition and a homeoporphism (cf. Theorem 2) and the others (Theorems 3 and 4) are concerned with the semi-continuity of entropy amount which are general form of Breiman's Theorem [1]. Finally, in §4, it will be discussed about the function h(x) found by Parthasarathy [7] whose integral defines the corresponding amount of entropy (cf. Theorem 5). It is also shown that the results in [9] can be generalized (cf. the footnote 2) below). The function h(x) may give useful and interesting tool for the general theory of entropy of measure preserving automorphism or flow over a probabiltiy space.","PeriodicalId":318148,"journal":{"name":"Kodai Mathematical Seminar Reports","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1964-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"General treatment of alphabet-message space and integral representation of entropy\",\"authors\":\"H. Umegaki\",\"doi\":\"10.2996/KMJ/1138844856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we shall clarify a topological structure of the alphabet-message space of the memory channel in information theory, and study the integral representation of entropy amount from a general view point of a certain generalized message space. In order to apply to the general theory of entropy, the present fashion will develop a message space into more general treatment, in which the basic space X will be assumed to be totally disconnected. As will be shown in §2, the alphabet-message space A is a totally disconnected compact space, and in § 3, a kind of theorem relative to sufficiency for a (/-field generated by a partition and a homeoporphism (cf. Theorem 2) and the others (Theorems 3 and 4) are concerned with the semi-continuity of entropy amount which are general form of Breiman's Theorem [1]. Finally, in §4, it will be discussed about the function h(x) found by Parthasarathy [7] whose integral defines the corresponding amount of entropy (cf. Theorem 5). It is also shown that the results in [9] can be generalized (cf. the footnote 2) below). The function h(x) may give useful and interesting tool for the general theory of entropy of measure preserving automorphism or flow over a probabiltiy space.\",\"PeriodicalId\":318148,\"journal\":{\"name\":\"Kodai Mathematical Seminar Reports\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1964-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Seminar Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2996/KMJ/1138844856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Seminar Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2996/KMJ/1138844856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文从信息论的角度阐明了存储信道的字母-消息空间的拓扑结构,并从广义消息空间的一般角度研究了熵量的积分表示。为了应用于熵的一般理论,目前的方式将把消息空间发展成更一般的处理方式,其中基本空间X将被假定为完全断开的。如§2所示,字母信息空间A是一个完全不连通的紧化空间,在§3中,一类关于由划分和同胚生成的(/-域的充分性的定理(参见定理2)和其他定理(定理3和定理4)是关于熵量的半连续性的,它们是Breiman定理[1]的一般形式。最后,在§4中,我们将讨论Parthasarathy[7]发现的函数h(x),它的积分定义了相应的熵量(参见定理5)。我们也证明了[9]的结果可以推广(参见下面的脚注2)。函数h(x)可以为测度熵的一般理论提供有用和有趣的工具,以保持自同构或在概率空间上的流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General treatment of alphabet-message space and integral representation of entropy
In this paper we shall clarify a topological structure of the alphabet-message space of the memory channel in information theory, and study the integral representation of entropy amount from a general view point of a certain generalized message space. In order to apply to the general theory of entropy, the present fashion will develop a message space into more general treatment, in which the basic space X will be assumed to be totally disconnected. As will be shown in §2, the alphabet-message space A is a totally disconnected compact space, and in § 3, a kind of theorem relative to sufficiency for a (/-field generated by a partition and a homeoporphism (cf. Theorem 2) and the others (Theorems 3 and 4) are concerned with the semi-continuity of entropy amount which are general form of Breiman's Theorem [1]. Finally, in §4, it will be discussed about the function h(x) found by Parthasarathy [7] whose integral defines the corresponding amount of entropy (cf. Theorem 5). It is also shown that the results in [9] can be generalized (cf. the footnote 2) below). The function h(x) may give useful and interesting tool for the general theory of entropy of measure preserving automorphism or flow over a probabiltiy space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信