针对有害藻华检测的多时相数据进化特征子集选择研究

B. Gokaraju, S. Durbha, R. King, N. Younan
{"title":"针对有害藻华检测的多时相数据进化特征子集选择研究","authors":"B. Gokaraju, S. Durbha, R. King, N. Younan","doi":"10.1109/MULTI-TEMP.2011.6005070","DOIUrl":null,"url":null,"abstract":"In the present study we investigate the evolutionary feature subset selection using wrapper based genetic algorithms on Multi-temporal datasets. Feature subset selection helps in reducing the original feature dimension and also yields high performance. The evolutionary strategy attains a global optimum by reducing the computations iteratively and by traversing intelligently in the entire feature space. This method gave a very high performance improvement up to 0.97 kappa accuracy with a best reduced feature dimension for harmful algal bloom detection.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigation of evolutionary feature subset selection in multi-temporal datasets for harmful algal bloom detection\",\"authors\":\"B. Gokaraju, S. Durbha, R. King, N. Younan\",\"doi\":\"10.1109/MULTI-TEMP.2011.6005070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study we investigate the evolutionary feature subset selection using wrapper based genetic algorithms on Multi-temporal datasets. Feature subset selection helps in reducing the original feature dimension and also yields high performance. The evolutionary strategy attains a global optimum by reducing the computations iteratively and by traversing intelligently in the entire feature space. This method gave a very high performance improvement up to 0.97 kappa accuracy with a best reduced feature dimension for harmful algal bloom detection.\",\"PeriodicalId\":254778,\"journal\":{\"name\":\"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)\",\"volume\":\"220 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MULTI-TEMP.2011.6005070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本研究中,我们研究了基于包装的遗传算法在多时间数据集上的进化特征子集选择。特征子集选择有助于降低原始特征维数,并提高性能。该进化策略通过迭代减少计算量和智能遍历整个特征空间来达到全局最优。该方法对有害藻华的检测精度提高到0.97 kappa,并具有最佳降维特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of evolutionary feature subset selection in multi-temporal datasets for harmful algal bloom detection
In the present study we investigate the evolutionary feature subset selection using wrapper based genetic algorithms on Multi-temporal datasets. Feature subset selection helps in reducing the original feature dimension and also yields high performance. The evolutionary strategy attains a global optimum by reducing the computations iteratively and by traversing intelligently in the entire feature space. This method gave a very high performance improvement up to 0.97 kappa accuracy with a best reduced feature dimension for harmful algal bloom detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信