斜沸石对孔雀石绿的吸附:平衡、动力学和热力学研究

R. Heydari, M. Khavarpour
{"title":"斜沸石对孔雀石绿的吸附:平衡、动力学和热力学研究","authors":"R. Heydari, M. Khavarpour","doi":"10.5829/ije.2018.31.01a.01","DOIUrl":null,"url":null,"abstract":"The object of present study was to examine the adsorption potential of nanozeolite clinoptilolite (CP) for the removal of malachite green (MG) from aqueous phase in a batch equilibrium system. SEM, EDX, XRF, XRD and FT-IR techniques of characterization of zeolite were applied. The effects of initial pH solution, adsorbent dose, temperature, contact time and initial MG concentration on adsorption were evaluated. Adsorption experiments were conducted at initial concentrations in the range of 10–50 mg/L and temperatures at 25, 30 and 35°C. MG adsorption uptake was found to increase with an increase in contact time, initial MG concentration and solution temperature. The adsorption equilibrium data revealed the best fit with Koble-Corrigan model. The kinetics of MG on adsorbent followed the pseudo-second-order model. In addition, the assessment of kinetic data depicted that the adsorption rate was controlled by intraparticle diffusion mechanism. The negative values of standard Gibbs free energy represented the spontaneous adsorption at the stated temperature. The positive values of enthalpy and entropy changes also confirmed the increased randomness and endothermic nature of MG adsorption on nanozeolite CP adsorbent. Furthermore, the obtained activation energy showed the physical adsorption process.","PeriodicalId":416886,"journal":{"name":"International journal of engineering. Transactions A: basics","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adsorption of Malachite Green from Aqueous Solution by Nanozeolite Clinoptilolite: Equilibrium, Kinetic and Thermodynamic Studies\",\"authors\":\"R. Heydari, M. Khavarpour\",\"doi\":\"10.5829/ije.2018.31.01a.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object of present study was to examine the adsorption potential of nanozeolite clinoptilolite (CP) for the removal of malachite green (MG) from aqueous phase in a batch equilibrium system. SEM, EDX, XRF, XRD and FT-IR techniques of characterization of zeolite were applied. The effects of initial pH solution, adsorbent dose, temperature, contact time and initial MG concentration on adsorption were evaluated. Adsorption experiments were conducted at initial concentrations in the range of 10–50 mg/L and temperatures at 25, 30 and 35°C. MG adsorption uptake was found to increase with an increase in contact time, initial MG concentration and solution temperature. The adsorption equilibrium data revealed the best fit with Koble-Corrigan model. The kinetics of MG on adsorbent followed the pseudo-second-order model. In addition, the assessment of kinetic data depicted that the adsorption rate was controlled by intraparticle diffusion mechanism. The negative values of standard Gibbs free energy represented the spontaneous adsorption at the stated temperature. The positive values of enthalpy and entropy changes also confirmed the increased randomness and endothermic nature of MG adsorption on nanozeolite CP adsorbent. Furthermore, the obtained activation energy showed the physical adsorption process.\",\"PeriodicalId\":416886,\"journal\":{\"name\":\"International journal of engineering. Transactions A: basics\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of engineering. Transactions A: basics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ije.2018.31.01a.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of engineering. Transactions A: basics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ije.2018.31.01a.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究了纳米沸石斜沸石(CP)在间歇平衡体系中对孔雀石绿(MG)的吸附性能。采用SEM、EDX、XRF、XRD、FT-IR等技术对沸石进行了表征。考察了初始pH溶液、吸附剂剂量、温度、接触时间和初始MG浓度对吸附的影响。吸附实验在初始浓度为10-50 mg/L,温度为25、30和35℃的条件下进行。MG吸附吸收率随接触时间、初始MG浓度和溶液温度的增加而增加。吸附平衡数据符合Koble-Corrigan模型。MG在吸附剂上的动力学符合准二阶模型。此外,动力学数据的评估表明吸附速率受颗粒内扩散机制控制。标准吉布斯自由能的负值表示在规定温度下的自发吸附。焓变和熵变的正值也证实了纳米沸石CP吸附剂对MG吸附的随机性和吸热性增强。此外,得到的活化能显示了物理吸附过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adsorption of Malachite Green from Aqueous Solution by Nanozeolite Clinoptilolite: Equilibrium, Kinetic and Thermodynamic Studies
The object of present study was to examine the adsorption potential of nanozeolite clinoptilolite (CP) for the removal of malachite green (MG) from aqueous phase in a batch equilibrium system. SEM, EDX, XRF, XRD and FT-IR techniques of characterization of zeolite were applied. The effects of initial pH solution, adsorbent dose, temperature, contact time and initial MG concentration on adsorption were evaluated. Adsorption experiments were conducted at initial concentrations in the range of 10–50 mg/L and temperatures at 25, 30 and 35°C. MG adsorption uptake was found to increase with an increase in contact time, initial MG concentration and solution temperature. The adsorption equilibrium data revealed the best fit with Koble-Corrigan model. The kinetics of MG on adsorbent followed the pseudo-second-order model. In addition, the assessment of kinetic data depicted that the adsorption rate was controlled by intraparticle diffusion mechanism. The negative values of standard Gibbs free energy represented the spontaneous adsorption at the stated temperature. The positive values of enthalpy and entropy changes also confirmed the increased randomness and endothermic nature of MG adsorption on nanozeolite CP adsorbent. Furthermore, the obtained activation energy showed the physical adsorption process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信