结构加性回归与树提升

Michael Mayer, Steven C. Bourassa, Martin Hoesli, D. Scognamiglio
{"title":"结构加性回归与树提升","authors":"Michael Mayer, Steven C. Bourassa, Martin Hoesli, D. Scognamiglio","doi":"10.2139/ssrn.3924412","DOIUrl":null,"url":null,"abstract":"Structured additive regression (STAR) models are a rich class of regression models that include the generalized linear model (GLM) and the generalized additive model (GAM). STAR models can be fitted by Bayesian approaches, component-wise gradient boosting, penalized least-squares, and deep learning. Using feature interaction constraints, we show that such models can be implemented also by the gradient boosting powerhouses XGBoost and LightGBM, thereby benefiting from their excellent predictive capabilities. Furthermore, we show how STAR models can be used for supervised dimension reduction and explain under what circumstances covariate effects of such models can be described in a transparent way. We illustrate the methodology with case studies pertaining to house price modeling, with very encouraging results regarding both interpretability and predictive performance.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structured Additive Regression and Tree Boosting\",\"authors\":\"Michael Mayer, Steven C. Bourassa, Martin Hoesli, D. Scognamiglio\",\"doi\":\"10.2139/ssrn.3924412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structured additive regression (STAR) models are a rich class of regression models that include the generalized linear model (GLM) and the generalized additive model (GAM). STAR models can be fitted by Bayesian approaches, component-wise gradient boosting, penalized least-squares, and deep learning. Using feature interaction constraints, we show that such models can be implemented also by the gradient boosting powerhouses XGBoost and LightGBM, thereby benefiting from their excellent predictive capabilities. Furthermore, we show how STAR models can be used for supervised dimension reduction and explain under what circumstances covariate effects of such models can be described in a transparent way. We illustrate the methodology with case studies pertaining to house price modeling, with very encouraging results regarding both interpretability and predictive performance.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3924412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3924412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结构加性回归(STAR)模型是一类丰富的回归模型,包括广义线性模型(GLM)和广义加性模型(GAM)。STAR模型可以通过贝叶斯方法、组件梯度增强、惩罚最小二乘和深度学习来拟合。利用特征交互约束,我们证明这种模型也可以通过梯度增强工具XGBoost和LightGBM实现,从而受益于它们出色的预测能力。此外,我们展示了如何使用STAR模型进行监督降维,并解释了在什么情况下这些模型的协变量效应可以以透明的方式描述。我们通过与房价建模相关的案例研究来说明该方法,在可解释性和预测性能方面都取得了非常令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structured Additive Regression and Tree Boosting
Structured additive regression (STAR) models are a rich class of regression models that include the generalized linear model (GLM) and the generalized additive model (GAM). STAR models can be fitted by Bayesian approaches, component-wise gradient boosting, penalized least-squares, and deep learning. Using feature interaction constraints, we show that such models can be implemented also by the gradient boosting powerhouses XGBoost and LightGBM, thereby benefiting from their excellent predictive capabilities. Furthermore, we show how STAR models can be used for supervised dimension reduction and explain under what circumstances covariate effects of such models can be described in a transparent way. We illustrate the methodology with case studies pertaining to house price modeling, with very encouraging results regarding both interpretability and predictive performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信