{"title":"二维电子振动光谱与经典轨迹。","authors":"Kritanjan Polley, Roger F Loring","doi":"10.1063/5.0090868","DOIUrl":null,"url":null,"abstract":"Two-dimensional electronic-vibrational (2DEV) spectra have the capacity to probe electron-nuclear interactions in molecules by measuring correlations between initial electronic excitations and vibrational transitions at a later time. The trajectory-based semiclassical optimized mean trajectory approach is applied to compute 2DEV spectra for a system with excitonically coupled electronic excited states vibronically coupled to a chromophore vibration. The chromophore mode is in turn coupled to a bath, inducing redistribution of vibrational populations. The lineshapes and delay-time dynamics of the resulting spectra compare well with benchmark calculations, both at the level of the observable and with respect to contributions from distinct spectroscopic processes.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"2D electronic-vibrational spectroscopy with classical trajectories.\",\"authors\":\"Kritanjan Polley, Roger F Loring\",\"doi\":\"10.1063/5.0090868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional electronic-vibrational (2DEV) spectra have the capacity to probe electron-nuclear interactions in molecules by measuring correlations between initial electronic excitations and vibrational transitions at a later time. The trajectory-based semiclassical optimized mean trajectory approach is applied to compute 2DEV spectra for a system with excitonically coupled electronic excited states vibronically coupled to a chromophore vibration. The chromophore mode is in turn coupled to a bath, inducing redistribution of vibrational populations. The lineshapes and delay-time dynamics of the resulting spectra compare well with benchmark calculations, both at the level of the observable and with respect to contributions from distinct spectroscopic processes.\",\"PeriodicalId\":446961,\"journal\":{\"name\":\"The Journal of chemical physics\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of chemical physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0090868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of chemical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0090868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
2D electronic-vibrational spectroscopy with classical trajectories.
Two-dimensional electronic-vibrational (2DEV) spectra have the capacity to probe electron-nuclear interactions in molecules by measuring correlations between initial electronic excitations and vibrational transitions at a later time. The trajectory-based semiclassical optimized mean trajectory approach is applied to compute 2DEV spectra for a system with excitonically coupled electronic excited states vibronically coupled to a chromophore vibration. The chromophore mode is in turn coupled to a bath, inducing redistribution of vibrational populations. The lineshapes and delay-time dynamics of the resulting spectra compare well with benchmark calculations, both at the level of the observable and with respect to contributions from distinct spectroscopic processes.