智能车辆的保动态定性运动描述

A. Miene, Andreas D. Lattner, Ubbo Visser, O. Herzog
{"title":"智能车辆的保动态定性运动描述","authors":"A. Miene, Andreas D. Lattner, Ubbo Visser, O. Herzog","doi":"10.1109/IVS.2004.1336459","DOIUrl":null,"url":null,"abstract":"Planning, acting, and recognizing intentions of participants in traffic situations requires the processing of complex spatio-temporal situations. If spatio-temporal information was represented quantitatively it would result in a huge amount of data. We claim that an abstraction to a qualitative description leads to more stable representations as similar situations at the quantitative level are mapped to one qualitative representation. Our approach is evaluated by emulating traffic situations with settings in the Robocup small-sized league.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Dynamic-preserving qualitative motion description for intelligent vehicles\",\"authors\":\"A. Miene, Andreas D. Lattner, Ubbo Visser, O. Herzog\",\"doi\":\"10.1109/IVS.2004.1336459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planning, acting, and recognizing intentions of participants in traffic situations requires the processing of complex spatio-temporal situations. If spatio-temporal information was represented quantitatively it would result in a huge amount of data. We claim that an abstraction to a qualitative description leads to more stable representations as similar situations at the quantitative level are mapped to one qualitative representation. Our approach is evaluated by emulating traffic situations with settings in the Robocup small-sized league.\",\"PeriodicalId\":296386,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2004.1336459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

交通情景中参与者的规划、行动和意图识别需要处理复杂的时空情景。如果对时空信息进行量化表示,将会产生大量的数据。我们声称,定性描述的抽象导致更稳定的表征,因为在定量水平上的类似情况被映射到一个定性表征。我们的方法是通过模拟Robocup小型联赛中的交通状况来评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic-preserving qualitative motion description for intelligent vehicles
Planning, acting, and recognizing intentions of participants in traffic situations requires the processing of complex spatio-temporal situations. If spatio-temporal information was represented quantitatively it would result in a huge amount of data. We claim that an abstraction to a qualitative description leads to more stable representations as similar situations at the quantitative level are mapped to one qualitative representation. Our approach is evaluated by emulating traffic situations with settings in the Robocup small-sized league.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信