了解统计披露攻击中真实世界行为的影响

Simon Oya, C. Troncoso, F. Pérez-González
{"title":"了解统计披露攻击中真实世界行为的影响","authors":"Simon Oya, C. Troncoso, F. Pérez-González","doi":"10.1109/WIFS.2014.7084306","DOIUrl":null,"url":null,"abstract":"High-latency anonymous communication systems prevent passive eavesdroppers from inferring communicating partners with certainty. However, disclosure attacks allow an adversary to recover users' behavioral profiles when communications are persistent. Understanding how the system parameters affect the privacy of the users against such attacks is crucial. Earlier work in the area analyzes the performance of disclosure attacks in controlled scenarios, where a certain model about the users' behavior is assumed. In this paper, we analyze the profiling accuracy of one of the most efficient disclosure attack, the least squares disclosure attack, in realistic scenarios. We generate real traffic observations from datasets of different nature and find that the models considered in previous work do not fit this realistic behavior. We relax previous hypotheses on the behavior of the users and extend previous performance analyses, validating our results with real data and providing new insights into the parameters that affect the protection of the users in the real world.","PeriodicalId":220523,"journal":{"name":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Understanding the effects of real-world behavior in statistical disclosure attacks\",\"authors\":\"Simon Oya, C. Troncoso, F. Pérez-González\",\"doi\":\"10.1109/WIFS.2014.7084306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-latency anonymous communication systems prevent passive eavesdroppers from inferring communicating partners with certainty. However, disclosure attacks allow an adversary to recover users' behavioral profiles when communications are persistent. Understanding how the system parameters affect the privacy of the users against such attacks is crucial. Earlier work in the area analyzes the performance of disclosure attacks in controlled scenarios, where a certain model about the users' behavior is assumed. In this paper, we analyze the profiling accuracy of one of the most efficient disclosure attack, the least squares disclosure attack, in realistic scenarios. We generate real traffic observations from datasets of different nature and find that the models considered in previous work do not fit this realistic behavior. We relax previous hypotheses on the behavior of the users and extend previous performance analyses, validating our results with real data and providing new insights into the parameters that affect the protection of the users in the real world.\",\"PeriodicalId\":220523,\"journal\":{\"name\":\"2014 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS.2014.7084306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2014.7084306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高延迟匿名通信系统可以防止被动窃听者确定地推断通信伙伴。然而,披露攻击允许攻击者在通信持续时恢复用户的行为配置文件。了解系统参数如何影响用户的隐私免受此类攻击是至关重要的。该领域的早期工作分析了受控场景下披露攻击的性能,其中假设了关于用户行为的特定模型。在本文中,我们分析了最有效的披露攻击之一——最小二乘披露攻击在现实场景中的分析准确性。我们从不同性质的数据集生成真实的交通观测结果,并发现以前工作中考虑的模型不适合这种现实行为。我们放松了以前对用户行为的假设,扩展了以前的性能分析,用真实数据验证了我们的结果,并对影响现实世界中用户保护的参数提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the effects of real-world behavior in statistical disclosure attacks
High-latency anonymous communication systems prevent passive eavesdroppers from inferring communicating partners with certainty. However, disclosure attacks allow an adversary to recover users' behavioral profiles when communications are persistent. Understanding how the system parameters affect the privacy of the users against such attacks is crucial. Earlier work in the area analyzes the performance of disclosure attacks in controlled scenarios, where a certain model about the users' behavior is assumed. In this paper, we analyze the profiling accuracy of one of the most efficient disclosure attack, the least squares disclosure attack, in realistic scenarios. We generate real traffic observations from datasets of different nature and find that the models considered in previous work do not fit this realistic behavior. We relax previous hypotheses on the behavior of the users and extend previous performance analyses, validating our results with real data and providing new insights into the parameters that affect the protection of the users in the real world.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信