Ewen Cheslack-Postava, N. Goodnight, Ren Ng, R. Ramamoorthi, G. Humphreys
{"title":"4D压缩和重照明与高分辨率光传输矩阵","authors":"Ewen Cheslack-Postava, N. Goodnight, Ren Ng, R. Ramamoorthi, G. Humphreys","doi":"10.1145/1230100.1230115","DOIUrl":null,"url":null,"abstract":"This paper presents a method for efficient compression and relighting with high-resolution, precomputed light transport matrices. We accomplish this using a 4D wavelet transform, transforming the columns of the transport matrix, in addition to the 2D row transform used in previous work. We show that a standard 4D wavelet transform can actually inflate portions of the matrix, because high-frequency lights lead to high-frequency images that cannot easily be compressed. Therefore, we present an adaptive 4D wavelet transform that terminates at a level that avoids inflation and maximizes sparsity in the matrix data. Finally, we present an algorithm for fast relighting from adaptively compressed transport matrices. Combined with a GPU-based precomputation pipeline, this results in an image and geometry relighting system that performs significantly better than 2D compression techniques, on average 2x-3x better in terms of storage cost and rendering speed for equal quality matrices.","PeriodicalId":140639,"journal":{"name":"Proceedings of the 2007 symposium on Interactive 3D graphics and games","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"4D compression and relighting with high-resolution light transport matrices\",\"authors\":\"Ewen Cheslack-Postava, N. Goodnight, Ren Ng, R. Ramamoorthi, G. Humphreys\",\"doi\":\"10.1145/1230100.1230115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for efficient compression and relighting with high-resolution, precomputed light transport matrices. We accomplish this using a 4D wavelet transform, transforming the columns of the transport matrix, in addition to the 2D row transform used in previous work. We show that a standard 4D wavelet transform can actually inflate portions of the matrix, because high-frequency lights lead to high-frequency images that cannot easily be compressed. Therefore, we present an adaptive 4D wavelet transform that terminates at a level that avoids inflation and maximizes sparsity in the matrix data. Finally, we present an algorithm for fast relighting from adaptively compressed transport matrices. Combined with a GPU-based precomputation pipeline, this results in an image and geometry relighting system that performs significantly better than 2D compression techniques, on average 2x-3x better in terms of storage cost and rendering speed for equal quality matrices.\",\"PeriodicalId\":140639,\"journal\":{\"name\":\"Proceedings of the 2007 symposium on Interactive 3D graphics and games\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2007 symposium on Interactive 3D graphics and games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1230100.1230115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 symposium on Interactive 3D graphics and games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1230100.1230115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
4D compression and relighting with high-resolution light transport matrices
This paper presents a method for efficient compression and relighting with high-resolution, precomputed light transport matrices. We accomplish this using a 4D wavelet transform, transforming the columns of the transport matrix, in addition to the 2D row transform used in previous work. We show that a standard 4D wavelet transform can actually inflate portions of the matrix, because high-frequency lights lead to high-frequency images that cannot easily be compressed. Therefore, we present an adaptive 4D wavelet transform that terminates at a level that avoids inflation and maximizes sparsity in the matrix data. Finally, we present an algorithm for fast relighting from adaptively compressed transport matrices. Combined with a GPU-based precomputation pipeline, this results in an image and geometry relighting system that performs significantly better than 2D compression techniques, on average 2x-3x better in terms of storage cost and rendering speed for equal quality matrices.