线性正则变换的涡旋表示研究

R. Andriambololona, Ravo Tokiniaina Ranaivoson, Hanitriarivo Rakotoson
{"title":"线性正则变换的涡旋表示研究","authors":"R. Andriambololona, Ravo Tokiniaina Ranaivoson, Hanitriarivo Rakotoson","doi":"10.11648/J.IJAMTP.20190503.12","DOIUrl":null,"url":null,"abstract":"This work is a continuation of our previous works concerning linear canonical transformations and phase space representation of quantum theory. It is mainly focused on the description of an approach which allows to establish spinorial representation of linear canonical transformations. This description is started with the presentation of a suitable parameterization of linear canonical transformations which permits to represent them with special pseudo-orthogonal transformations in an operator space. Then the establishment of the spinorial representation is deduced using the well-known relation existing between special pseudo-orthogonal and spin groups. The cases of one dimension and general multidimensional theory are both studied.","PeriodicalId":367229,"journal":{"name":"International Journal of Applied Mathematics and Theoretical Physics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study on a Spinorial Representation of Linear Canonical Transformation\",\"authors\":\"R. Andriambololona, Ravo Tokiniaina Ranaivoson, Hanitriarivo Rakotoson\",\"doi\":\"10.11648/J.IJAMTP.20190503.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is a continuation of our previous works concerning linear canonical transformations and phase space representation of quantum theory. It is mainly focused on the description of an approach which allows to establish spinorial representation of linear canonical transformations. This description is started with the presentation of a suitable parameterization of linear canonical transformations which permits to represent them with special pseudo-orthogonal transformations in an operator space. Then the establishment of the spinorial representation is deduced using the well-known relation existing between special pseudo-orthogonal and spin groups. The cases of one dimension and general multidimensional theory are both studied.\",\"PeriodicalId\":367229,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Theoretical Physics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJAMTP.20190503.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJAMTP.20190503.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作是我们之前关于量子理论的线性正则变换和相空间表示的工作的延续。它主要集中在描述一种方法,它允许建立线性正则变换的螺旋表示。本文首先给出了线性正则变换的一种合适的参数化,这种参数化允许在算子空间中用特殊的伪正交变换来表示它们。然后利用已知的特殊伪正交群与自旋群之间的关系,推导了旋表示的建立。研究了一维理论和一般多维理论的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on a Spinorial Representation of Linear Canonical Transformation
This work is a continuation of our previous works concerning linear canonical transformations and phase space representation of quantum theory. It is mainly focused on the description of an approach which allows to establish spinorial representation of linear canonical transformations. This description is started with the presentation of a suitable parameterization of linear canonical transformations which permits to represent them with special pseudo-orthogonal transformations in an operator space. Then the establishment of the spinorial representation is deduced using the well-known relation existing between special pseudo-orthogonal and spin groups. The cases of one dimension and general multidimensional theory are both studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信