违反cpt的引力轨道摄动

D. Colladay
{"title":"违反cpt的引力轨道摄动","authors":"D. Colladay","doi":"10.1142/9789811213984_0046","DOIUrl":null,"url":null,"abstract":"A model for spontaneous symmetry breaking using a specific form of the bumblebee model is analyzed in the context of a Schwarzschild background metric. The resulting back reaction of the symmetry-breaking field on the metric is computed to second order. Consistency with conventional (pseudo)Riemannian geometry is demonstrated. This background field is coupled to fermions via a spin-dependent CPT-violating coupling term of a type commonly considered in the Standard-Model Extension. The perturbations of various orbital trajectories are discussed. Specifically, a spin-dependent orbital velocity is found as well as a spin-dependent precession rate.","PeriodicalId":104099,"journal":{"name":"CPT and Lorentz Symmetry","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CPT-Violating Gravitational Orbital Perturbations\",\"authors\":\"D. Colladay\",\"doi\":\"10.1142/9789811213984_0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model for spontaneous symmetry breaking using a specific form of the bumblebee model is analyzed in the context of a Schwarzschild background metric. The resulting back reaction of the symmetry-breaking field on the metric is computed to second order. Consistency with conventional (pseudo)Riemannian geometry is demonstrated. This background field is coupled to fermions via a spin-dependent CPT-violating coupling term of a type commonly considered in the Standard-Model Extension. The perturbations of various orbital trajectories are discussed. Specifically, a spin-dependent orbital velocity is found as well as a spin-dependent precession rate.\",\"PeriodicalId\":104099,\"journal\":{\"name\":\"CPT and Lorentz Symmetry\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPT and Lorentz Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811213984_0046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT and Lorentz Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811213984_0046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在史瓦西背景度规的背景下,分析了大黄蜂模型的一种特殊形式的自发对称性破断模型。所得到的对称破断场对度规的反作用力被计算到二阶。证明了与常规(伪)黎曼几何的一致性。这个背景场通过一个依赖自旋的违反cpt的耦合项耦合到费米子上,这种耦合项通常在标准模型扩展中被考虑。讨论了各种轨道的微扰。具体地说,我们发现了与自旋相关的轨道速度以及与自旋相关的进动率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CPT-Violating Gravitational Orbital Perturbations
A model for spontaneous symmetry breaking using a specific form of the bumblebee model is analyzed in the context of a Schwarzschild background metric. The resulting back reaction of the symmetry-breaking field on the metric is computed to second order. Consistency with conventional (pseudo)Riemannian geometry is demonstrated. This background field is coupled to fermions via a spin-dependent CPT-violating coupling term of a type commonly considered in the Standard-Model Extension. The perturbations of various orbital trajectories are discussed. Specifically, a spin-dependent orbital velocity is found as well as a spin-dependent precession rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信