{"title":"利用差分进化对COOCMO模型参数进行调优的软件工作量估计","authors":"S. Aljahdali, A. Sheta","doi":"10.1109/AICCSA.2010.5586985","DOIUrl":null,"url":null,"abstract":"Accurate estimation of software projects costs represents a challenge for many government organizations such as the Department of Defenses (DOD) and NASA. Statistical models considerably used to assist in such a computation. There is still an urgent need on finding a mathematical model which can provide an accurate relationship between the software project effort/cost and the cost drivers. A powerful algorithm which can optimize such a relationship via tuning mathematical model parameters is urgently needed. In [1] two new model structures to estimate the effort required for software projects using Genetic Algorithms (GAs) were proposed as a modification to the famous Constructive Cost Model (COCOMO). In this paper, we follow up on our previous work and present Differential Evolution (DE) as an alternative technique to estimate the COCOMO model parameters. The performance of the developed models were tested on NASA software project dataset provided in [2]. The developed COCOMO-DE model was able to provide good estimation capabilities.","PeriodicalId":352946,"journal":{"name":"ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Software effort estimation by tuning COOCMO model parameters using differential evolution\",\"authors\":\"S. Aljahdali, A. Sheta\",\"doi\":\"10.1109/AICCSA.2010.5586985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate estimation of software projects costs represents a challenge for many government organizations such as the Department of Defenses (DOD) and NASA. Statistical models considerably used to assist in such a computation. There is still an urgent need on finding a mathematical model which can provide an accurate relationship between the software project effort/cost and the cost drivers. A powerful algorithm which can optimize such a relationship via tuning mathematical model parameters is urgently needed. In [1] two new model structures to estimate the effort required for software projects using Genetic Algorithms (GAs) were proposed as a modification to the famous Constructive Cost Model (COCOMO). In this paper, we follow up on our previous work and present Differential Evolution (DE) as an alternative technique to estimate the COCOMO model parameters. The performance of the developed models were tested on NASA software project dataset provided in [2]. The developed COCOMO-DE model was able to provide good estimation capabilities.\",\"PeriodicalId\":352946,\"journal\":{\"name\":\"ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICCSA.2010.5586985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2010.5586985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Software effort estimation by tuning COOCMO model parameters using differential evolution
Accurate estimation of software projects costs represents a challenge for many government organizations such as the Department of Defenses (DOD) and NASA. Statistical models considerably used to assist in such a computation. There is still an urgent need on finding a mathematical model which can provide an accurate relationship between the software project effort/cost and the cost drivers. A powerful algorithm which can optimize such a relationship via tuning mathematical model parameters is urgently needed. In [1] two new model structures to estimate the effort required for software projects using Genetic Algorithms (GAs) were proposed as a modification to the famous Constructive Cost Model (COCOMO). In this paper, we follow up on our previous work and present Differential Evolution (DE) as an alternative technique to estimate the COCOMO model parameters. The performance of the developed models were tested on NASA software project dataset provided in [2]. The developed COCOMO-DE model was able to provide good estimation capabilities.