能够跳过从混沌动力学出现的步骤

Luciana P. P. Bueno, A. Araujo
{"title":"能够跳过从混沌动力学出现的步骤","authors":"Luciana P. P. Bueno, A. Araujo","doi":"10.1109/IJCNN.2005.1555944","DOIUrl":null,"url":null,"abstract":"A chaotic bidirectional memory model (C-BAM) is constructed through the inclusion of chaotic neurons in the original BAM. Empiric experiments showed the occurrence of a chaotic dynamic capable to generate large diversity of recalled patterns involving complex excursions over all stored memories. This suggested that the retrieval sequence can model the ability of a novice or the ability of an expert to execute a task. Moreover, the paper illustrates a case in which a novice recall can be transformed into an expert recall through parametric variation.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ability to skip steps emerging from chaotic dynamics\",\"authors\":\"Luciana P. P. Bueno, A. Araujo\",\"doi\":\"10.1109/IJCNN.2005.1555944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A chaotic bidirectional memory model (C-BAM) is constructed through the inclusion of chaotic neurons in the original BAM. Empiric experiments showed the occurrence of a chaotic dynamic capable to generate large diversity of recalled patterns involving complex excursions over all stored memories. This suggested that the retrieval sequence can model the ability of a novice or the ability of an expert to execute a task. Moreover, the paper illustrates a case in which a novice recall can be transformed into an expert recall through parametric variation.\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1555944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在混沌双向记忆模型中加入混沌神经元,构建混沌双向记忆模型(C-BAM)。经验性实验表明,混沌动态的发生能够产生大量不同的回忆模式,涉及所有存储记忆的复杂漂移。这表明检索序列可以模拟新手或专家执行任务的能力。此外,本文还举例说明了一个通过参数变化将新手回忆转化为专家回忆的案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ability to skip steps emerging from chaotic dynamics
A chaotic bidirectional memory model (C-BAM) is constructed through the inclusion of chaotic neurons in the original BAM. Empiric experiments showed the occurrence of a chaotic dynamic capable to generate large diversity of recalled patterns involving complex excursions over all stored memories. This suggested that the retrieval sequence can model the ability of a novice or the ability of an expert to execute a task. Moreover, the paper illustrates a case in which a novice recall can be transformed into an expert recall through parametric variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信