J. Stephens, A. Neuber, J. Dickens, M. Kristiansen
{"title":"螺旋磁通压缩发生器的紧凑型电爆引信优化","authors":"J. Stephens, A. Neuber, J. Dickens, M. Kristiansen","doi":"10.1109/PPC.2011.6191477","DOIUrl":null,"url":null,"abstract":"This paper presents the optimization of a compact electro-explosive fuse designed for the power conditioning system to be driven by a helical flux compression generator (HFCG). An electro-explosive fuse interrupts the current flow from the HFCG through a storage inductor on a 50 to 100 ns timescale inducing a voltage large enough to close a peaking gap, which commutates the energy in the storage inductor into a 20 Ohm load at voltage levels above 200 kV. Experimental data has revealed that electro-explosive fuses with wires in closer proximity to one another have consistently produced lower pulsed voltages than fuses with larger wire spacings. This paper addresses possible factors that might contribute to this drop in performance. An electro-magnetic field solver is used to model the current redistribution in the fuse wires. The experimentally observed performance of compact fuses with varying wire spacings is presented.","PeriodicalId":331835,"journal":{"name":"2011 IEEE Pulsed Power Conference","volume":"248 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compact electro-explosive fuse optimization for a helical flux compression generator\",\"authors\":\"J. Stephens, A. Neuber, J. Dickens, M. Kristiansen\",\"doi\":\"10.1109/PPC.2011.6191477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the optimization of a compact electro-explosive fuse designed for the power conditioning system to be driven by a helical flux compression generator (HFCG). An electro-explosive fuse interrupts the current flow from the HFCG through a storage inductor on a 50 to 100 ns timescale inducing a voltage large enough to close a peaking gap, which commutates the energy in the storage inductor into a 20 Ohm load at voltage levels above 200 kV. Experimental data has revealed that electro-explosive fuses with wires in closer proximity to one another have consistently produced lower pulsed voltages than fuses with larger wire spacings. This paper addresses possible factors that might contribute to this drop in performance. An electro-magnetic field solver is used to model the current redistribution in the fuse wires. The experimentally observed performance of compact fuses with varying wire spacings is presented.\",\"PeriodicalId\":331835,\"journal\":{\"name\":\"2011 IEEE Pulsed Power Conference\",\"volume\":\"248 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Pulsed Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPC.2011.6191477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.2011.6191477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compact electro-explosive fuse optimization for a helical flux compression generator
This paper presents the optimization of a compact electro-explosive fuse designed for the power conditioning system to be driven by a helical flux compression generator (HFCG). An electro-explosive fuse interrupts the current flow from the HFCG through a storage inductor on a 50 to 100 ns timescale inducing a voltage large enough to close a peaking gap, which commutates the energy in the storage inductor into a 20 Ohm load at voltage levels above 200 kV. Experimental data has revealed that electro-explosive fuses with wires in closer proximity to one another have consistently produced lower pulsed voltages than fuses with larger wire spacings. This paper addresses possible factors that might contribute to this drop in performance. An electro-magnetic field solver is used to model the current redistribution in the fuse wires. The experimentally observed performance of compact fuses with varying wire spacings is presented.