基于深度卷积神经网络的遥感图像密集目标检测

Zhipeng Deng, Lin Lei, Hao Sun, H. Zou, Shilin Zhou, Juanping Zhao
{"title":"基于深度卷积神经网络的遥感图像密集目标检测","authors":"Zhipeng Deng, Lin Lei, Hao Sun, H. Zou, Shilin Zhou, Juanping Zhao","doi":"10.1109/RSIP.2017.7958800","DOIUrl":null,"url":null,"abstract":"Faster Region based convolutional neural networks (FRCN) has shown great success in object detection in recent years. However, its performance will degrade on densely packed objects in real remote sensing applications. To address this problem, an enhanced deep CNN based method is developed in this paper. Following the common pipeline of “CNN feature extraction + region proposal + Region classification”, our method is primarily based on the latest Residual Networks (ResNets) and consists of two sub-networks: an object proposal network and an object detection network. For detecting densely packed objects, the output of multi-scale layers are combined together to enhance the resolution of the feature maps. Our method is trained on the VHR-10 data set with limited samples and successfully tested on large-scale google earth images, such as aircraft boneyard or tank farm, containing a substantial number of densely packed objects.","PeriodicalId":262222,"journal":{"name":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"An enhanced deep convolutional neural network for densely packed objects detection in remote sensing images\",\"authors\":\"Zhipeng Deng, Lin Lei, Hao Sun, H. Zou, Shilin Zhou, Juanping Zhao\",\"doi\":\"10.1109/RSIP.2017.7958800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Faster Region based convolutional neural networks (FRCN) has shown great success in object detection in recent years. However, its performance will degrade on densely packed objects in real remote sensing applications. To address this problem, an enhanced deep CNN based method is developed in this paper. Following the common pipeline of “CNN feature extraction + region proposal + Region classification”, our method is primarily based on the latest Residual Networks (ResNets) and consists of two sub-networks: an object proposal network and an object detection network. For detecting densely packed objects, the output of multi-scale layers are combined together to enhance the resolution of the feature maps. Our method is trained on the VHR-10 data set with limited samples and successfully tested on large-scale google earth images, such as aircraft boneyard or tank farm, containing a substantial number of densely packed objects.\",\"PeriodicalId\":262222,\"journal\":{\"name\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSIP.2017.7958800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSIP.2017.7958800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

近年来,基于快速区域的卷积神经网络(FRCN)在目标检测方面取得了巨大的成功。然而,在实际遥感应用中,其在密集物体上的性能会下降。为了解决这一问题,本文提出了一种基于深度CNN的增强方法。我们的方法遵循“CNN特征提取+区域建议+区域分类”的常用流程,主要基于最新的残差网络(ResNets),由两个子网络组成:目标建议网络和目标检测网络。为了检测密集堆积的物体,将多尺度层的输出组合在一起,以提高特征图的分辨率。我们的方法在样本有限的VHR-10数据集上进行了训练,并成功地在包含大量密集物体的大规模google earth图像上进行了测试,例如飞机墓地或油罐场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An enhanced deep convolutional neural network for densely packed objects detection in remote sensing images
Faster Region based convolutional neural networks (FRCN) has shown great success in object detection in recent years. However, its performance will degrade on densely packed objects in real remote sensing applications. To address this problem, an enhanced deep CNN based method is developed in this paper. Following the common pipeline of “CNN feature extraction + region proposal + Region classification”, our method is primarily based on the latest Residual Networks (ResNets) and consists of two sub-networks: an object proposal network and an object detection network. For detecting densely packed objects, the output of multi-scale layers are combined together to enhance the resolution of the feature maps. Our method is trained on the VHR-10 data set with limited samples and successfully tested on large-scale google earth images, such as aircraft boneyard or tank farm, containing a substantial number of densely packed objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信