{"title":"在立方体地图空间的内部面上进行视场分辨率独立的反锯齿光线行进","authors":"Tianchen Xu, Wei Zeng, E. Wu","doi":"10.1145/3478512.3488598","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to anti-aliased ray marching by indirect shading in cube-map space. Our volume renderer firstly performs ray marching on each visible interior pixel of a maximum-resolution-limited cube map, and then resamples (usually up-scales) the cube imposter in viewport space. By this viewport-resolution-independent strategy, developers can improve both ray-marching performance and its quality of anti-aliasing when allowing larger marching strides. Moreover, our solution also covers depth-occlusion anti-aliasing for mixed mesh-volume rendering, cube-map level-of-details (LOD) optimization for a further performance boost, and multiple-volume rendering by leveraging the GPU inline ray tracing. Besides, our implementation is developer-friendly and the performance-quality tradeoff determined by the parameter configuration is easily controllable.","PeriodicalId":156290,"journal":{"name":"SIGGRAPH Asia 2021 Technical Communications","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Viewport-Resolution Independent Anti-Aliased Ray Marching on Interior Faces in Cube-Map Space\",\"authors\":\"Tianchen Xu, Wei Zeng, E. Wu\",\"doi\":\"10.1145/3478512.3488598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to anti-aliased ray marching by indirect shading in cube-map space. Our volume renderer firstly performs ray marching on each visible interior pixel of a maximum-resolution-limited cube map, and then resamples (usually up-scales) the cube imposter in viewport space. By this viewport-resolution-independent strategy, developers can improve both ray-marching performance and its quality of anti-aliasing when allowing larger marching strides. Moreover, our solution also covers depth-occlusion anti-aliasing for mixed mesh-volume rendering, cube-map level-of-details (LOD) optimization for a further performance boost, and multiple-volume rendering by leveraging the GPU inline ray tracing. Besides, our implementation is developer-friendly and the performance-quality tradeoff determined by the parameter configuration is easily controllable.\",\"PeriodicalId\":156290,\"journal\":{\"name\":\"SIGGRAPH Asia 2021 Technical Communications\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2021 Technical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3478512.3488598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2021 Technical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3478512.3488598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Viewport-Resolution Independent Anti-Aliased Ray Marching on Interior Faces in Cube-Map Space
This paper presents a novel approach to anti-aliased ray marching by indirect shading in cube-map space. Our volume renderer firstly performs ray marching on each visible interior pixel of a maximum-resolution-limited cube map, and then resamples (usually up-scales) the cube imposter in viewport space. By this viewport-resolution-independent strategy, developers can improve both ray-marching performance and its quality of anti-aliasing when allowing larger marching strides. Moreover, our solution also covers depth-occlusion anti-aliasing for mixed mesh-volume rendering, cube-map level-of-details (LOD) optimization for a further performance boost, and multiple-volume rendering by leveraging the GPU inline ray tracing. Besides, our implementation is developer-friendly and the performance-quality tradeoff determined by the parameter configuration is easily controllable.