显微镜下生理老化的熵率

T. Pham
{"title":"显微镜下生理老化的熵率","authors":"T. Pham","doi":"10.1109/SSCI.2016.7849867","DOIUrl":null,"url":null,"abstract":"This paper presents a method for computing entropy rates of images by modeling a stationary Markov chain constructed from a weighted graph. The proposed method was applied to the quantification of the complex behavior of the growing rates of physiological aging of Caenorhabditis elegans (C. elegans) on microscopic images, which has been considered as one of the most challenging problems in the search for metrics that can be used for identifying differences among stages in high-throughput and high-content images of physiological aging.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy rates of physiological aging on microscopy\",\"authors\":\"T. Pham\",\"doi\":\"10.1109/SSCI.2016.7849867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for computing entropy rates of images by modeling a stationary Markov chain constructed from a weighted graph. The proposed method was applied to the quantification of the complex behavior of the growing rates of physiological aging of Caenorhabditis elegans (C. elegans) on microscopic images, which has been considered as one of the most challenging problems in the search for metrics that can be used for identifying differences among stages in high-throughput and high-content images of physiological aging.\",\"PeriodicalId\":120288,\"journal\":{\"name\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2016.7849867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7849867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种计算图像熵率的方法,通过对加权图构造的平稳马尔可夫链进行建模。该方法被应用于秀丽隐杆线虫(C. elegans)生理衰老生长速率在显微图像上的复杂行为的量化,这被认为是寻找可用于识别高通量和高含量生理衰老图像中不同阶段差异的指标的最具挑战性的问题之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy rates of physiological aging on microscopy
This paper presents a method for computing entropy rates of images by modeling a stationary Markov chain constructed from a weighted graph. The proposed method was applied to the quantification of the complex behavior of the growing rates of physiological aging of Caenorhabditis elegans (C. elegans) on microscopic images, which has been considered as one of the most challenging problems in the search for metrics that can be used for identifying differences among stages in high-throughput and high-content images of physiological aging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信