心理状态诊断系统中“语音/停顿”分割的噪声鲁棒算法

A. Alimuradov, A. Tychkov, P. Churakov, Yury S. Kvitka, A. Zaretskiy, G. Vishnevskaya
{"title":"心理状态诊断系统中“语音/停顿”分割的噪声鲁棒算法","authors":"A. Alimuradov, A. Tychkov, P. Churakov, Yury S. Kvitka, A. Zaretskiy, G. Vishnevskaya","doi":"10.1109/ENT.2016.009","DOIUrl":null,"url":null,"abstract":"Low detection accuracy of speech signal boundaries and pauses is one of the main problems of practical realization of diagnostic systems of psychogenic states. This paper proposes a noise-robust algorithm for 'speech/pause' segmentation, operating under free physical activity of a patient. In developing the algorithm the following methods were used: a method for adaptive processing of non-stationary signals – the Complementary Ensemble Empirical Mode Decomposition (CEEMD), a statistical data processing method – the Independent Component Analysis (ICA), a differentiation method using the concepts of normal distribution and one-dimensional Mahalanobis distance. The article presents a block diagram for the algorithm with a detailed mathematical description. The advantages over the known 'speech/pause' segmentation algorithms are shown. The developed algorithm enhances the actual detection rate by the average of 11.3%. A comparison of researches' results suggests that the developed 'speech/pause' segmentation algorithm is recommended for practical application in the diagnostic systems of psychogenic states, operating under free physical activity of a patient.","PeriodicalId":356690,"journal":{"name":"2016 International Conference on Engineering and Telecommunication (EnT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Noise-Robust Algorithm for \\\"Speech/Pause\\\" Segmentation in Diagnostic Systems of Psychogenic States\",\"authors\":\"A. Alimuradov, A. Tychkov, P. Churakov, Yury S. Kvitka, A. Zaretskiy, G. Vishnevskaya\",\"doi\":\"10.1109/ENT.2016.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low detection accuracy of speech signal boundaries and pauses is one of the main problems of practical realization of diagnostic systems of psychogenic states. This paper proposes a noise-robust algorithm for 'speech/pause' segmentation, operating under free physical activity of a patient. In developing the algorithm the following methods were used: a method for adaptive processing of non-stationary signals – the Complementary Ensemble Empirical Mode Decomposition (CEEMD), a statistical data processing method – the Independent Component Analysis (ICA), a differentiation method using the concepts of normal distribution and one-dimensional Mahalanobis distance. The article presents a block diagram for the algorithm with a detailed mathematical description. The advantages over the known 'speech/pause' segmentation algorithms are shown. The developed algorithm enhances the actual detection rate by the average of 11.3%. A comparison of researches' results suggests that the developed 'speech/pause' segmentation algorithm is recommended for practical application in the diagnostic systems of psychogenic states, operating under free physical activity of a patient.\",\"PeriodicalId\":356690,\"journal\":{\"name\":\"2016 International Conference on Engineering and Telecommunication (EnT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Engineering and Telecommunication (EnT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENT.2016.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Engineering and Telecommunication (EnT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENT.2016.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

语音信号边界和停顿检测精度低是心理状态诊断系统实际实现的主要问题之一。本文提出了一种“语音/暂停”分割的噪声鲁棒算法,该算法在患者自由运动的情况下运行。在开发算法时使用了以下方法:一种非平稳信号的自适应处理方法-互补集成经验模式分解(CEEMD),一种统计数据处理方法-独立分量分析(ICA),一种使用正态分布和一维马氏距离概念的微分方法。本文给出了该算法的框图,并进行了详细的数学描述。显示了与已知的“语音/暂停”分割算法相比的优点。该算法将实际检测率平均提高11.3%。研究结果的比较表明,所开发的“语音/停顿”分割算法可在心理状态诊断系统中实际应用,在患者自由运动的情况下运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise-Robust Algorithm for "Speech/Pause" Segmentation in Diagnostic Systems of Psychogenic States
Low detection accuracy of speech signal boundaries and pauses is one of the main problems of practical realization of diagnostic systems of psychogenic states. This paper proposes a noise-robust algorithm for 'speech/pause' segmentation, operating under free physical activity of a patient. In developing the algorithm the following methods were used: a method for adaptive processing of non-stationary signals – the Complementary Ensemble Empirical Mode Decomposition (CEEMD), a statistical data processing method – the Independent Component Analysis (ICA), a differentiation method using the concepts of normal distribution and one-dimensional Mahalanobis distance. The article presents a block diagram for the algorithm with a detailed mathematical description. The advantages over the known 'speech/pause' segmentation algorithms are shown. The developed algorithm enhances the actual detection rate by the average of 11.3%. A comparison of researches' results suggests that the developed 'speech/pause' segmentation algorithm is recommended for practical application in the diagnostic systems of psychogenic states, operating under free physical activity of a patient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信