可扩展时空Top-k社区交互查询

Abdulaziz Almaslukh, Yongyi Liu, A. Magdy
{"title":"可扩展时空Top-k社区交互查询","authors":"Abdulaziz Almaslukh, Yongyi Liu, A. Magdy","doi":"10.1145/3474717.3483962","DOIUrl":null,"url":null,"abstract":"The excessive amount of data that online users produce through social media platforms provides valuable insights about users and communities at scale. Existing techniques have not fully exploited such data to help practitioners perform a deep analysis of large online communities. Lack of scalability hinders analyzing communities of large sizes and requires tremendous system resources and unacceptable runtime. This paper introduces a new analytical query that reveals the top-k posts of interest of a given user community over a period of time and in a certain location. We propose a novel indexing framework that captures the interactions of community users to provide a low query latency. Moreover, we propose efficient query algorithms that utilize the index content to prune the search space. The extensive experimental evaluation on real data has shown the superiority of our techniques and their scalability to support large online communities.","PeriodicalId":340759,"journal":{"name":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Spatio-Temporal Top-k Community Interactions Query\",\"authors\":\"Abdulaziz Almaslukh, Yongyi Liu, A. Magdy\",\"doi\":\"10.1145/3474717.3483962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The excessive amount of data that online users produce through social media platforms provides valuable insights about users and communities at scale. Existing techniques have not fully exploited such data to help practitioners perform a deep analysis of large online communities. Lack of scalability hinders analyzing communities of large sizes and requires tremendous system resources and unacceptable runtime. This paper introduces a new analytical query that reveals the top-k posts of interest of a given user community over a period of time and in a certain location. We propose a novel indexing framework that captures the interactions of community users to provide a low query latency. Moreover, we propose efficient query algorithms that utilize the index content to prune the search space. The extensive experimental evaluation on real data has shown the superiority of our techniques and their scalability to support large online communities.\",\"PeriodicalId\":340759,\"journal\":{\"name\":\"Proceedings of the 29th International Conference on Advances in Geographic Information Systems\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474717.3483962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474717.3483962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在线用户通过社交媒体平台产生的大量数据为大规模的用户和社区提供了有价值的见解。现有的技术还没有充分利用这些数据来帮助从业者对大型在线社区进行深入分析。缺乏可伸缩性阻碍了对大型社区的分析,并且需要大量的系统资源和不可接受的运行时。本文介绍了一种新的分析查询,它可以显示给定用户社区在一段时间内和在特定位置的top-k帖子。我们提出了一种新的索引框架,它可以捕获社区用户的交互,以提供低查询延迟。此外,我们提出了有效的查询算法,利用索引内容修剪搜索空间。对实际数据的大量实验评估表明了我们的技术的优越性和可扩展性,以支持大型在线社区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Spatio-Temporal Top-k Community Interactions Query
The excessive amount of data that online users produce through social media platforms provides valuable insights about users and communities at scale. Existing techniques have not fully exploited such data to help practitioners perform a deep analysis of large online communities. Lack of scalability hinders analyzing communities of large sizes and requires tremendous system resources and unacceptable runtime. This paper introduces a new analytical query that reveals the top-k posts of interest of a given user community over a period of time and in a certain location. We propose a novel indexing framework that captures the interactions of community users to provide a low query latency. Moreover, we propose efficient query algorithms that utilize the index content to prune the search space. The extensive experimental evaluation on real data has shown the superiority of our techniques and their scalability to support large online communities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信