基于进化多目标优化的伦理多利益相关者推荐系统

Naime Ranjbar Kermany, Weiliang Zhao, Jian Yang, Jia Wu, L. Pizzato
{"title":"基于进化多目标优化的伦理多利益相关者推荐系统","authors":"Naime Ranjbar Kermany, Weiliang Zhao, Jian Yang, Jia Wu, L. Pizzato","doi":"10.1109/SCC49832.2020.00074","DOIUrl":null,"url":null,"abstract":"In this work, we propose an ethical multi-stakeholder recommender system that uses a multi-objective evolutionary algorithm to make a trade-off between provider coverage, long-tail services inclusion, and recommendation accuracy. Experimental results on real-world datasets show that the proposed method significantly improves the novelty and diversity of recommended services and the coverage of providers with minor loss of accuracy.","PeriodicalId":274909,"journal":{"name":"2020 IEEE International Conference on Services Computing (SCC)","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An Ethical Multi-Stakeholder Recommender System Based on Evolutionary Multi-Objective Optimization\",\"authors\":\"Naime Ranjbar Kermany, Weiliang Zhao, Jian Yang, Jia Wu, L. Pizzato\",\"doi\":\"10.1109/SCC49832.2020.00074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose an ethical multi-stakeholder recommender system that uses a multi-objective evolutionary algorithm to make a trade-off between provider coverage, long-tail services inclusion, and recommendation accuracy. Experimental results on real-world datasets show that the proposed method significantly improves the novelty and diversity of recommended services and the coverage of providers with minor loss of accuracy.\",\"PeriodicalId\":274909,\"journal\":{\"name\":\"2020 IEEE International Conference on Services Computing (SCC)\",\"volume\":\"247 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Services Computing (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC49832.2020.00074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC49832.2020.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在这项工作中,我们提出了一个道德的多利益相关者推荐系统,该系统使用多目标进化算法在提供者覆盖范围、长尾服务包含和推荐准确性之间进行权衡。在真实数据集上的实验结果表明,该方法显著提高了推荐服务的新颖性和多样性,提高了提供商的覆盖范围,而准确性损失较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ethical Multi-Stakeholder Recommender System Based on Evolutionary Multi-Objective Optimization
In this work, we propose an ethical multi-stakeholder recommender system that uses a multi-objective evolutionary algorithm to make a trade-off between provider coverage, long-tail services inclusion, and recommendation accuracy. Experimental results on real-world datasets show that the proposed method significantly improves the novelty and diversity of recommended services and the coverage of providers with minor loss of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信