基于深度卷积网络的自发面部微表情识别

Zhaoqiang Xia, Xiaoyi Feng, Xiaopeng Hong, Guoying Zhao
{"title":"基于深度卷积网络的自发面部微表情识别","authors":"Zhaoqiang Xia, Xiaoyi Feng, Xiaopeng Hong, Guoying Zhao","doi":"10.1109/IPTA.2018.8608119","DOIUrl":null,"url":null,"abstract":"The automatic recognition of spontaneous facial micro-expressions becomes prevalent as it reveals the actual emotion of humans. However, handcrafted features employed for recognizing micro-expressions are designed for general applications and thus cannot well capture the subtle facial deformations of micro-expressions. To address this problem, we propose an end-to-end deep learning framework to suit the particular needs of micro-expression recognition (MER). In the deep model, re- current convolutional networks are utilized to learn the representation of subtle changes from image sequences. To guarantee the learning of deep model, we present a temporal jittering procedure to greatly enrich the training samples. Through performing the experiments on three spontaneous micro-expression datasets, i.e., SMIC, CASME, and CASME2, we verify the effectiveness of our proposed MER approach.","PeriodicalId":272294,"journal":{"name":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Spontaneous Facial Micro-expression Recognition via Deep Convolutional Network\",\"authors\":\"Zhaoqiang Xia, Xiaoyi Feng, Xiaopeng Hong, Guoying Zhao\",\"doi\":\"10.1109/IPTA.2018.8608119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic recognition of spontaneous facial micro-expressions becomes prevalent as it reveals the actual emotion of humans. However, handcrafted features employed for recognizing micro-expressions are designed for general applications and thus cannot well capture the subtle facial deformations of micro-expressions. To address this problem, we propose an end-to-end deep learning framework to suit the particular needs of micro-expression recognition (MER). In the deep model, re- current convolutional networks are utilized to learn the representation of subtle changes from image sequences. To guarantee the learning of deep model, we present a temporal jittering procedure to greatly enrich the training samples. Through performing the experiments on three spontaneous micro-expression datasets, i.e., SMIC, CASME, and CASME2, we verify the effectiveness of our proposed MER approach.\",\"PeriodicalId\":272294,\"journal\":{\"name\":\"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2018.8608119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2018.8608119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

自发的面部微表情的自动识别因其反映了人类的真实情绪而变得普遍。然而,用于识别微表情的手工特征是为一般应用而设计的,因此不能很好地捕捉微表情的细微面部变形。为了解决这个问题,我们提出了一个端到端深度学习框架,以满足微表情识别(MER)的特殊需求。在深度模型中,利用卷积网络学习图像序列中细微变化的表示。为了保证深度模型的学习,我们提出了一种时间抖动方法来极大地丰富训练样本。通过在SMIC、CASME和CASME2三个自发微表达数据集上进行实验,验证了本文方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spontaneous Facial Micro-expression Recognition via Deep Convolutional Network
The automatic recognition of spontaneous facial micro-expressions becomes prevalent as it reveals the actual emotion of humans. However, handcrafted features employed for recognizing micro-expressions are designed for general applications and thus cannot well capture the subtle facial deformations of micro-expressions. To address this problem, we propose an end-to-end deep learning framework to suit the particular needs of micro-expression recognition (MER). In the deep model, re- current convolutional networks are utilized to learn the representation of subtle changes from image sequences. To guarantee the learning of deep model, we present a temporal jittering procedure to greatly enrich the training samples. Through performing the experiments on three spontaneous micro-expression datasets, i.e., SMIC, CASME, and CASME2, we verify the effectiveness of our proposed MER approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信