基于法向量不确定性的三维环境映射优化方法

S. Khan, N. Mitsou, D. Wollherr, C. Tzafestas
{"title":"基于法向量不确定性的三维环境映射优化方法","authors":"S. Khan, N. Mitsou, D. Wollherr, C. Tzafestas","doi":"10.1109/ICARCV.2012.6485267","DOIUrl":null,"url":null,"abstract":"In this paper a novel approach for 3D environment mapping using registered robot poses is presented. The proposed algorithm focuses on improving the quality of robot generated 3D maps by incorporating the uncertainty of 3D points and propagating it into the normal vectors of surfaces. The uncertainty of normal vectors is an indicator of the quality of the detected surface. A controlled random search algorithm is applied to optimize a non-convex function of uncertain normal vectors and number of clusters in order to find the optimal threshold parameter for the segmentation process. This approach leads to an improved cluster coherence and thus better maps.","PeriodicalId":441236,"journal":{"name":"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)","volume":"103 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An optimization approach for 3D environment mapping using normal vector uncertainty\",\"authors\":\"S. Khan, N. Mitsou, D. Wollherr, C. Tzafestas\",\"doi\":\"10.1109/ICARCV.2012.6485267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a novel approach for 3D environment mapping using registered robot poses is presented. The proposed algorithm focuses on improving the quality of robot generated 3D maps by incorporating the uncertainty of 3D points and propagating it into the normal vectors of surfaces. The uncertainty of normal vectors is an indicator of the quality of the detected surface. A controlled random search algorithm is applied to optimize a non-convex function of uncertain normal vectors and number of clusters in order to find the optimal threshold parameter for the segmentation process. This approach leads to an improved cluster coherence and thus better maps.\",\"PeriodicalId\":441236,\"journal\":{\"name\":\"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)\",\"volume\":\"103 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2012.6485267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2012.6485267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用机器人姿态进行三维环境映射的新方法。该算法将三维点的不确定性引入到曲面的法向量中,从而提高机器人生成的三维地图的质量。法向量的不确定度是检测表面质量的一个指标。采用控制随机搜索算法对不确定法向量和聚类数目的非凸函数进行优化,以找到分割过程的最优阈值参数。这种方法可以提高集群的一致性,从而得到更好的地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimization approach for 3D environment mapping using normal vector uncertainty
In this paper a novel approach for 3D environment mapping using registered robot poses is presented. The proposed algorithm focuses on improving the quality of robot generated 3D maps by incorporating the uncertainty of 3D points and propagating it into the normal vectors of surfaces. The uncertainty of normal vectors is an indicator of the quality of the detected surface. A controlled random search algorithm is applied to optimize a non-convex function of uncertain normal vectors and number of clusters in order to find the optimal threshold parameter for the segmentation process. This approach leads to an improved cluster coherence and thus better maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信