自动驾驶的精确感知:卡尔曼滤波在传感器融合中的应用

Yaqin Wang, Dongfang Liu, E. Matson
{"title":"自动驾驶的精确感知:卡尔曼滤波在传感器融合中的应用","authors":"Yaqin Wang, Dongfang Liu, E. Matson","doi":"10.1109/SAS48726.2020.9220083","DOIUrl":null,"url":null,"abstract":"Object tracking is a foundation task for autonomous driving. An increasing amount of work applies the sensor fusion to facilitate the tracking results. However, sensor fusion alone still cannot reach a desirable accuracy in real road conditions, because of the sensor noises and complexity of the motion dynamics. Bearing this in mind, we propose a method that applies Kalman filter on the LiDAR and radar sensor fusion to improve the accuracy in object tracking for the autonomous driving system. We evaluate our approach on the Udacity dataset. Results demonstrate that the Kalman filter drastically improves the final measurement compared to using sensor measurement alone. The work verifies the effectiveness of employment Kalman filter to facilitate the performance of sensor fusion measurements for the autonomous driving system.","PeriodicalId":223737,"journal":{"name":"2020 IEEE Sensors Applications Symposium (SAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate Perception for Autonomous Driving: Application of Kalman Filter for Sensor Fusion\",\"authors\":\"Yaqin Wang, Dongfang Liu, E. Matson\",\"doi\":\"10.1109/SAS48726.2020.9220083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object tracking is a foundation task for autonomous driving. An increasing amount of work applies the sensor fusion to facilitate the tracking results. However, sensor fusion alone still cannot reach a desirable accuracy in real road conditions, because of the sensor noises and complexity of the motion dynamics. Bearing this in mind, we propose a method that applies Kalman filter on the LiDAR and radar sensor fusion to improve the accuracy in object tracking for the autonomous driving system. We evaluate our approach on the Udacity dataset. Results demonstrate that the Kalman filter drastically improves the final measurement compared to using sensor measurement alone. The work verifies the effectiveness of employment Kalman filter to facilitate the performance of sensor fusion measurements for the autonomous driving system.\",\"PeriodicalId\":223737,\"journal\":{\"name\":\"2020 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS48726.2020.9220083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS48726.2020.9220083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标跟踪是自动驾驶的基础任务。越来越多的工作应用于传感器融合,以方便跟踪结果。然而,由于传感器噪声和运动动力学的复杂性,仅靠传感器融合仍然无法在实际道路条件下达到理想的精度。考虑到这一点,我们提出了一种将卡尔曼滤波应用于激光雷达和雷达传感器融合的方法,以提高自动驾驶系统的目标跟踪精度。我们在Udacity数据集上评估了我们的方法。结果表明,与单独使用传感器测量相比,卡尔曼滤波大大改善了最终测量结果。验证了利用卡尔曼滤波对自动驾驶系统传感器融合测量的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate Perception for Autonomous Driving: Application of Kalman Filter for Sensor Fusion
Object tracking is a foundation task for autonomous driving. An increasing amount of work applies the sensor fusion to facilitate the tracking results. However, sensor fusion alone still cannot reach a desirable accuracy in real road conditions, because of the sensor noises and complexity of the motion dynamics. Bearing this in mind, we propose a method that applies Kalman filter on the LiDAR and radar sensor fusion to improve the accuracy in object tracking for the autonomous driving system. We evaluate our approach on the Udacity dataset. Results demonstrate that the Kalman filter drastically improves the final measurement compared to using sensor measurement alone. The work verifies the effectiveness of employment Kalman filter to facilitate the performance of sensor fusion measurements for the autonomous driving system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信