立方体上的稀疏逼近

Sabrina Bruckmeier, Christoph Hunkenschröder, R. Weismantel
{"title":"立方体上的稀疏逼近","authors":"Sabrina Bruckmeier, Christoph Hunkenschröder, R. Weismantel","doi":"10.48550/arXiv.2210.02738","DOIUrl":null,"url":null,"abstract":"This paper presents an anlysis of the NP-hard minimization problem $\\min \\{\\|b - Ax\\|_2: \\ x \\in [0,1]^n, | \\text{supp}(x) | \\leq \\sigma\\}$, where $\\text{supp}(x) = \\{i \\in [n]: x_i \\neq 0\\}$ and $\\sigma$ is a positive integer. The object of investigation is a natural relaxation where we replace $| \\text{supp}(x) | \\leq \\sigma$ by $\\sum_i x_i \\leq \\sigma$. Our analysis includes a probabilistic view on when the relaxation is exact. We also consider the problem from a deterministic point of view and provide a bound on the distance between the images of optimal solutions of the original problem and its relaxation under $A$. This leads to an algorithm for generic matrices $A \\in \\mathbb{Z}^{m \\times n}$ and achieves a polynomial running time provided that $m$ and $\\|A\\|_{\\infty}$ are fixed.","PeriodicalId":421894,"journal":{"name":"Conference on Integer Programming and Combinatorial Optimization","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Approximation Over the Cube\",\"authors\":\"Sabrina Bruckmeier, Christoph Hunkenschröder, R. Weismantel\",\"doi\":\"10.48550/arXiv.2210.02738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an anlysis of the NP-hard minimization problem $\\\\min \\\\{\\\\|b - Ax\\\\|_2: \\\\ x \\\\in [0,1]^n, | \\\\text{supp}(x) | \\\\leq \\\\sigma\\\\}$, where $\\\\text{supp}(x) = \\\\{i \\\\in [n]: x_i \\\\neq 0\\\\}$ and $\\\\sigma$ is a positive integer. The object of investigation is a natural relaxation where we replace $| \\\\text{supp}(x) | \\\\leq \\\\sigma$ by $\\\\sum_i x_i \\\\leq \\\\sigma$. Our analysis includes a probabilistic view on when the relaxation is exact. We also consider the problem from a deterministic point of view and provide a bound on the distance between the images of optimal solutions of the original problem and its relaxation under $A$. This leads to an algorithm for generic matrices $A \\\\in \\\\mathbb{Z}^{m \\\\times n}$ and achieves a polynomial running time provided that $m$ and $\\\\|A\\\\|_{\\\\infty}$ are fixed.\",\"PeriodicalId\":421894,\"journal\":{\"name\":\"Conference on Integer Programming and Combinatorial Optimization\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Integer Programming and Combinatorial Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.02738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Integer Programming and Combinatorial Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.02738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了NP-hard最小化问题$\min \{\|b - Ax\|_2: \ x \in [0,1]^n, | \text{supp}(x) | \leq \sigma\}$的分析,其中$\text{supp}(x) = \{i \in [n]: x_i \neq 0\}$和$\sigma$是一个正整数。调查的对象是一个自然的放松,我们用$\sum_i x_i \leq \sigma$代替$| \text{supp}(x) | \leq \sigma$。我们的分析包含了关于松弛何时为精确的概率观点。我们还从确定性的角度考虑了该问题,并给出了在$A$下原问题最优解图像与松弛图像之间距离的界限。这导致了通用矩阵$A \in \mathbb{Z}^{m \times n}$的算法,并在$m$和$\|A\|_{\infty}$固定的情况下实现了多项式的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Approximation Over the Cube
This paper presents an anlysis of the NP-hard minimization problem $\min \{\|b - Ax\|_2: \ x \in [0,1]^n, | \text{supp}(x) | \leq \sigma\}$, where $\text{supp}(x) = \{i \in [n]: x_i \neq 0\}$ and $\sigma$ is a positive integer. The object of investigation is a natural relaxation where we replace $| \text{supp}(x) | \leq \sigma$ by $\sum_i x_i \leq \sigma$. Our analysis includes a probabilistic view on when the relaxation is exact. We also consider the problem from a deterministic point of view and provide a bound on the distance between the images of optimal solutions of the original problem and its relaxation under $A$. This leads to an algorithm for generic matrices $A \in \mathbb{Z}^{m \times n}$ and achieves a polynomial running time provided that $m$ and $\|A\|_{\infty}$ are fixed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信