最新的角检测器性能综述

M. Awrangjeb, Guojun Lu
{"title":"最新的角检测器性能综述","authors":"M. Awrangjeb, Guojun Lu","doi":"10.1109/DICTA.2013.6691475","DOIUrl":null,"url":null,"abstract":"Contour-based corner detectors directly or indirectly estimate a significance measure (eg, curvature) on the points of a planar curve and select the curvature extrema points as corners. A number of promising contour-based corner detectors have recently been proposed. They mainly differ in how the curvature is estimated on each point of the given curve. As the curvature on a digital curve can only be approximated, it is important to estimate a curvature that remains stable against significant noises, for example, geometric transformations and compression, on the curve. Moreover, in many applications, for instance, in content-based image retrieval, a fast corner detector is a prerequisite. So, it is also a primary characteristic that how much time a corner detector takes for corner detection in a given image. In addition, different authors evaluated their detectors on different platforms using different evaluation systems. Evaluation systems that depend on human judgements and visual identification of corners are manual and too subjective. Application of a manual system on a large test database will be expensive. Therefore, it is important to evaluate the detectors on a common platform using an automatic evaluation system. This paper first reviews six most recent and highly performed corner detectors and analyse their theoretical running time. Then it uses an automatic evaluation system to analyse their performance. Both the robustness to noise and efficiency are estimated to rank the detectors.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Performance Review of Recent Corner Detectors\",\"authors\":\"M. Awrangjeb, Guojun Lu\",\"doi\":\"10.1109/DICTA.2013.6691475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contour-based corner detectors directly or indirectly estimate a significance measure (eg, curvature) on the points of a planar curve and select the curvature extrema points as corners. A number of promising contour-based corner detectors have recently been proposed. They mainly differ in how the curvature is estimated on each point of the given curve. As the curvature on a digital curve can only be approximated, it is important to estimate a curvature that remains stable against significant noises, for example, geometric transformations and compression, on the curve. Moreover, in many applications, for instance, in content-based image retrieval, a fast corner detector is a prerequisite. So, it is also a primary characteristic that how much time a corner detector takes for corner detection in a given image. In addition, different authors evaluated their detectors on different platforms using different evaluation systems. Evaluation systems that depend on human judgements and visual identification of corners are manual and too subjective. Application of a manual system on a large test database will be expensive. Therefore, it is important to evaluate the detectors on a common platform using an automatic evaluation system. This paper first reviews six most recent and highly performed corner detectors and analyse their theoretical running time. Then it uses an automatic evaluation system to analyse their performance. Both the robustness to noise and efficiency are estimated to rank the detectors.\",\"PeriodicalId\":231632,\"journal\":{\"name\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2013.6691475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于轮廓的角点检测器直接或间接地估计平面曲线点上的显著性测度(如曲率),并选择曲率极值点作为角点。最近提出了许多有前途的基于轮廓的角点检测器。它们的主要区别在于如何估计给定曲线上每个点的曲率。由于数字曲线上的曲率只能近似值,因此估计曲率在显著噪声下保持稳定是很重要的,例如,曲线上的几何变换和压缩。此外,在许多应用中,例如在基于内容的图像检索中,快速的角点检测器是先决条件。因此,角点检测器在给定图像中进行角点检测所需的时间也是一个主要特征。此外,不同的作者在不同的平台上使用不同的评估系统来评估他们的检测器。依赖于人的判断和对角落的视觉识别的评估系统是手动的,过于主观。在大型测试数据库上应用手动系统将是昂贵的。因此,在通用平台上使用自动评估系统对探测器进行评估是非常重要的。本文首先回顾了六种最新的高性能角点检测器,并分析了它们的理论运行时间。然后,它使用一个自动评估系统来分析他们的表现。对检测器的鲁棒性和效率进行了估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Performance Review of Recent Corner Detectors
Contour-based corner detectors directly or indirectly estimate a significance measure (eg, curvature) on the points of a planar curve and select the curvature extrema points as corners. A number of promising contour-based corner detectors have recently been proposed. They mainly differ in how the curvature is estimated on each point of the given curve. As the curvature on a digital curve can only be approximated, it is important to estimate a curvature that remains stable against significant noises, for example, geometric transformations and compression, on the curve. Moreover, in many applications, for instance, in content-based image retrieval, a fast corner detector is a prerequisite. So, it is also a primary characteristic that how much time a corner detector takes for corner detection in a given image. In addition, different authors evaluated their detectors on different platforms using different evaluation systems. Evaluation systems that depend on human judgements and visual identification of corners are manual and too subjective. Application of a manual system on a large test database will be expensive. Therefore, it is important to evaluate the detectors on a common platform using an automatic evaluation system. This paper first reviews six most recent and highly performed corner detectors and analyse their theoretical running time. Then it uses an automatic evaluation system to analyse their performance. Both the robustness to noise and efficiency are estimated to rank the detectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信