使用扩展数据表达式进行规则细化

Jung Min Kong, Dong-Hun Seo, W. Lee
{"title":"使用扩展数据表达式进行规则细化","authors":"Jung Min Kong, Dong-Hun Seo, W. Lee","doi":"10.1109/ICMLA.2007.75","DOIUrl":null,"url":null,"abstract":"The rule refinement problem has been known to be one of the most difficult and complex problems. This paper presents a systematic rule refinement method that deals with the old rule directly with the new data, for the first time. To be able to do the rule refinement, the data are represented in the extended data expression, where an event has its weight of importance. To show how this can be done systematically, a decision tree classifier is used for the rule refinement. The weights of the events of the former rule are adjusted according to the depth of the tree merged with the collected new data set to form the new rule. Experiment shows that this approach, with properly designing the weight assignment procedure, is promising to enhance the performance of the inference engine by generating a rule with higher accuracy than the one from new data set only.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Rule refinement with extended data expression\",\"authors\":\"Jung Min Kong, Dong-Hun Seo, W. Lee\",\"doi\":\"10.1109/ICMLA.2007.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rule refinement problem has been known to be one of the most difficult and complex problems. This paper presents a systematic rule refinement method that deals with the old rule directly with the new data, for the first time. To be able to do the rule refinement, the data are represented in the extended data expression, where an event has its weight of importance. To show how this can be done systematically, a decision tree classifier is used for the rule refinement. The weights of the events of the former rule are adjusted according to the depth of the tree merged with the collected new data set to form the new rule. Experiment shows that this approach, with properly designing the weight assignment procedure, is promising to enhance the performance of the inference engine by generating a rule with higher accuracy than the one from new data set only.\",\"PeriodicalId\":448863,\"journal\":{\"name\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2007.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

规则细化问题一直被认为是最困难和最复杂的问题之一。本文首次提出了用新数据直接处理旧规则的系统规则细化方法。为了能够进行规则细化,数据在扩展数据表达式中表示,其中事件具有其重要性权重。为了展示如何系统地做到这一点,我们使用决策树分类器进行规则细化。前一规则的事件权重根据树的深度与收集到的新数据集合并形成新规则。实验表明,该方法通过合理设计权值分配过程,生成比仅从新数据集生成的规则具有更高精度的规则,有望提高推理机的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rule refinement with extended data expression
The rule refinement problem has been known to be one of the most difficult and complex problems. This paper presents a systematic rule refinement method that deals with the old rule directly with the new data, for the first time. To be able to do the rule refinement, the data are represented in the extended data expression, where an event has its weight of importance. To show how this can be done systematically, a decision tree classifier is used for the rule refinement. The weights of the events of the former rule are adjusted according to the depth of the tree merged with the collected new data set to form the new rule. Experiment shows that this approach, with properly designing the weight assignment procedure, is promising to enhance the performance of the inference engine by generating a rule with higher accuracy than the one from new data set only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信