一个支持向量机希腊字符识别器

F. Camastra
{"title":"一个支持向量机希腊字符识别器","authors":"F. Camastra","doi":"10.1504/IJIDSS.2008.025018","DOIUrl":null,"url":null,"abstract":"This paper presents a handwritten Greek character recogniser based on Support Vector Machines (SVMs). The recogniser is composed of two modules: the first one is a feature extractor, the second one, the classifier, is performed by means of SVMs. The recogniser, tested on a database of more than 22000 handwritten Greek characters, has shown satisfactory performances. SVMs compare notably better, in terms of recognition rates, with popular neural classifiers, such as Learning Vector Quantisation (LVQ) and Multi-layer Perceptron (MLP).","PeriodicalId":311979,"journal":{"name":"Int. J. Intell. Def. Support Syst.","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A SVM Greek character recogniser\",\"authors\":\"F. Camastra\",\"doi\":\"10.1504/IJIDSS.2008.025018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a handwritten Greek character recogniser based on Support Vector Machines (SVMs). The recogniser is composed of two modules: the first one is a feature extractor, the second one, the classifier, is performed by means of SVMs. The recogniser, tested on a database of more than 22000 handwritten Greek characters, has shown satisfactory performances. SVMs compare notably better, in terms of recognition rates, with popular neural classifiers, such as Learning Vector Quantisation (LVQ) and Multi-layer Perceptron (MLP).\",\"PeriodicalId\":311979,\"journal\":{\"name\":\"Int. J. Intell. Def. Support Syst.\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Intell. Def. Support Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJIDSS.2008.025018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Def. Support Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIDSS.2008.025018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于支持向量机(svm)的手写体希腊字符识别器。该识别系统由两个模块组成:第一个模块是特征提取器,第二个模块是通过支持向量机实现的分类器。该识别器在超过22000个希腊手写字符的数据库中进行了测试,结果令人满意。在识别率方面,svm与流行的神经分类器(如学习向量量化(LVQ)和多层感知器(MLP))相比明显更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A SVM Greek character recogniser
This paper presents a handwritten Greek character recogniser based on Support Vector Machines (SVMs). The recogniser is composed of two modules: the first one is a feature extractor, the second one, the classifier, is performed by means of SVMs. The recogniser, tested on a database of more than 22000 handwritten Greek characters, has shown satisfactory performances. SVMs compare notably better, in terms of recognition rates, with popular neural classifiers, such as Learning Vector Quantisation (LVQ) and Multi-layer Perceptron (MLP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信