S. Li, Xing Xu, Zailei Zhou, Yang Yang, Guoqing Wang, Heng Tao Shen
{"title":"ARRA:针对图像检索的绝对相对排序攻击","authors":"S. Li, Xing Xu, Zailei Zhou, Yang Yang, Guoqing Wang, Heng Tao Shen","doi":"10.1145/3503161.3548138","DOIUrl":null,"url":null,"abstract":"With the extensive application of deep learning, adversarial attacks especially query-based attacks receive more concern than ever before. However, the scenarios assumed by existing query-based attacks against image retrieval are usually too simple to satisfy the attack demand. In this paper, we propose a novel method termed Absolute-Relative Ranking Attack (ARRA) that considers a more practical attack scenario. Specifically, we propose two compatible goals for the query-based attack, i.e., absolute ranking attack and relative ranking attack, which aim to change the relative order of chosen candidates and assign the specific ranks to chosen candidates in retrieval list respectively. We further devise the Absolute Ranking Loss (ARL) and Relative Ranking Loss (RRL) for the above goals and implement our ARRA by minimizing their combination with black-box optimizers and evaluate the attack performance by attack success rate and normalized ranking correlation. Extensive experiments conducted on widely-used SOP and CUB-200 datasets demonstrate the superiority of the proposed approach over the baselines. Moreover, the attack result on a real-world image retrieval system, i.e., Huawei Cloud Image Search, also proves the practicability of our ARRA approach.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ARRA: Absolute-Relative Ranking Attack against Image Retrieval\",\"authors\":\"S. Li, Xing Xu, Zailei Zhou, Yang Yang, Guoqing Wang, Heng Tao Shen\",\"doi\":\"10.1145/3503161.3548138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the extensive application of deep learning, adversarial attacks especially query-based attacks receive more concern than ever before. However, the scenarios assumed by existing query-based attacks against image retrieval are usually too simple to satisfy the attack demand. In this paper, we propose a novel method termed Absolute-Relative Ranking Attack (ARRA) that considers a more practical attack scenario. Specifically, we propose two compatible goals for the query-based attack, i.e., absolute ranking attack and relative ranking attack, which aim to change the relative order of chosen candidates and assign the specific ranks to chosen candidates in retrieval list respectively. We further devise the Absolute Ranking Loss (ARL) and Relative Ranking Loss (RRL) for the above goals and implement our ARRA by minimizing their combination with black-box optimizers and evaluate the attack performance by attack success rate and normalized ranking correlation. Extensive experiments conducted on widely-used SOP and CUB-200 datasets demonstrate the superiority of the proposed approach over the baselines. Moreover, the attack result on a real-world image retrieval system, i.e., Huawei Cloud Image Search, also proves the practicability of our ARRA approach.\",\"PeriodicalId\":412792,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503161.3548138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ARRA: Absolute-Relative Ranking Attack against Image Retrieval
With the extensive application of deep learning, adversarial attacks especially query-based attacks receive more concern than ever before. However, the scenarios assumed by existing query-based attacks against image retrieval are usually too simple to satisfy the attack demand. In this paper, we propose a novel method termed Absolute-Relative Ranking Attack (ARRA) that considers a more practical attack scenario. Specifically, we propose two compatible goals for the query-based attack, i.e., absolute ranking attack and relative ranking attack, which aim to change the relative order of chosen candidates and assign the specific ranks to chosen candidates in retrieval list respectively. We further devise the Absolute Ranking Loss (ARL) and Relative Ranking Loss (RRL) for the above goals and implement our ARRA by minimizing their combination with black-box optimizers and evaluate the attack performance by attack success rate and normalized ranking correlation. Extensive experiments conducted on widely-used SOP and CUB-200 datasets demonstrate the superiority of the proposed approach over the baselines. Moreover, the attack result on a real-world image retrieval system, i.e., Huawei Cloud Image Search, also proves the practicability of our ARRA approach.