{"title":"与共享的社会经济路径一致的空间明确的全球国内生产总值(GDP)数据集","authors":"Tingting Wang, F. Sun","doi":"10.5281/ZENODO.4350027","DOIUrl":null,"url":null,"abstract":"Abstract. The increasing demand of ScenarioMIP is calling for GDP projections of high resolution for the future Shared Socioeconomic Pathways (SSPs) in both socioeconomic development and in climate change of adaption and mitigation research. While to date the global GDP projections for five SSPs are mainly provided at national scales, and the gridded data set are very limited. Meanwhile, the historical GDP can be disaggregated using nighttime light (NTL) images but the results are not open accessed, making it cumbersome in climate change impact and socioeconomic risk assessments across research disciplines. To this end, we produce a set of spatially explicit global Gross Domestic Product (GDP) that presents substantial long-term changes of economic activities for both historical period (2005 as representative) and for future projections under all five SSPs with a spatial resolution of 30 arc-seconds. Chinese population in SSP database were first replaced by the projections under the two-children policy implemented since 2016 and then used to spatialize global GDP using NTL images and gridded population together as fixed base map, which outperformed at subnational scales. The GDP data are consistent with projections from the SSPs and are freely available at http://doi.org/10.5281/zenodo.4350027 (Wang and Sun, 2020). We also provide another set of spatially explicit GDP using the global LandScan population as fixed base map, which is recommended at county or even smaller scales where NTL images are limited. Our results highlight the necessity and availability of using gridded GDP projections with high resolution for scenario-based climate change research and socioeconomic development that are consistent with all five SSPs.","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatially explicit global gross domestic product (GDP) data set consistent with the Shared Socioeconomic Pathways\",\"authors\":\"Tingting Wang, F. Sun\",\"doi\":\"10.5281/ZENODO.4350027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The increasing demand of ScenarioMIP is calling for GDP projections of high resolution for the future Shared Socioeconomic Pathways (SSPs) in both socioeconomic development and in climate change of adaption and mitigation research. While to date the global GDP projections for five SSPs are mainly provided at national scales, and the gridded data set are very limited. Meanwhile, the historical GDP can be disaggregated using nighttime light (NTL) images but the results are not open accessed, making it cumbersome in climate change impact and socioeconomic risk assessments across research disciplines. To this end, we produce a set of spatially explicit global Gross Domestic Product (GDP) that presents substantial long-term changes of economic activities for both historical period (2005 as representative) and for future projections under all five SSPs with a spatial resolution of 30 arc-seconds. Chinese population in SSP database were first replaced by the projections under the two-children policy implemented since 2016 and then used to spatialize global GDP using NTL images and gridded population together as fixed base map, which outperformed at subnational scales. The GDP data are consistent with projections from the SSPs and are freely available at http://doi.org/10.5281/zenodo.4350027 (Wang and Sun, 2020). We also provide another set of spatially explicit GDP using the global LandScan population as fixed base map, which is recommended at county or even smaller scales where NTL images are limited. Our results highlight the necessity and availability of using gridded GDP projections with high resolution for scenario-based climate change research and socioeconomic development that are consistent with all five SSPs.\",\"PeriodicalId\":326085,\"journal\":{\"name\":\"Earth System Science Data Discussions\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Science Data Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.4350027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.4350027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatially explicit global gross domestic product (GDP) data set consistent with the Shared Socioeconomic Pathways
Abstract. The increasing demand of ScenarioMIP is calling for GDP projections of high resolution for the future Shared Socioeconomic Pathways (SSPs) in both socioeconomic development and in climate change of adaption and mitigation research. While to date the global GDP projections for five SSPs are mainly provided at national scales, and the gridded data set are very limited. Meanwhile, the historical GDP can be disaggregated using nighttime light (NTL) images but the results are not open accessed, making it cumbersome in climate change impact and socioeconomic risk assessments across research disciplines. To this end, we produce a set of spatially explicit global Gross Domestic Product (GDP) that presents substantial long-term changes of economic activities for both historical period (2005 as representative) and for future projections under all five SSPs with a spatial resolution of 30 arc-seconds. Chinese population in SSP database were first replaced by the projections under the two-children policy implemented since 2016 and then used to spatialize global GDP using NTL images and gridded population together as fixed base map, which outperformed at subnational scales. The GDP data are consistent with projections from the SSPs and are freely available at http://doi.org/10.5281/zenodo.4350027 (Wang and Sun, 2020). We also provide another set of spatially explicit GDP using the global LandScan population as fixed base map, which is recommended at county or even smaller scales where NTL images are limited. Our results highlight the necessity and availability of using gridded GDP projections with high resolution for scenario-based climate change research and socioeconomic development that are consistent with all five SSPs.