一种求多元函数最小值的方法,并应用于导弹和卫星数据的约简

ACM '59 Pub Date : 1959-09-01 DOI:10.1145/612201.612285
E. R. Lancaster
{"title":"一种求多元函数最小值的方法,并应用于导弹和卫星数据的约简","authors":"E. R. Lancaster","doi":"10.1145/612201.612285","DOIUrl":null,"url":null,"abstract":"Let (XI, X2, . . e , Xn) be an approximation to the location of a minim~ of the continuous function f (Xl, x2, . . . , Xn). Let h i be a number associated with x i, We define the following abbreviations: ~o ~ f(x~, x2,. o °, 4), f(X i + h i ) = f(Xl, X 2, ° ~ • ~ Xi + hi, . . . , Xn), z(x i h~, xj + hi) ~ f(Xl, . . . , X~ hi, o . ., Xj ÷ hi, . ° . , Xn), e~. Thus any variables not appearing in parentheses will be assumed to have the values at the point of approximation to the minimum. The method consists of fitting a complete second-degree polynomial in the n variables to the f~mction in the neighborhood of a minim~mLo Let this polynomial be n n n n-! (I) ~ fo ~ ~ bi ~i + 1⁄2 ~ a~ xi 2 ~ ~ T aij x~ ~j i=l i=l j =i+l i=l i To fit this polynomial to the function, we force the polynomial and the function to correspond at 1⁄2n(n + 3) points in addition to the point (Xl, . ° . , Xn, fo) ° The resulting set of simultaneous equations is solved for the coefficients b i and aij in (I). Then setting the partial derivatives of (I) equal to zero, we obtain a set of n simultaneous linear equations. The solution of this set gives a new approximation to the location of a minimum of the function.","PeriodicalId":109454,"journal":{"name":"ACM '59","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1959-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A method for finding a minimum of a multivariate function with applications to the reduction of missile and satellite data\",\"authors\":\"E. R. Lancaster\",\"doi\":\"10.1145/612201.612285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let (XI, X2, . . e , Xn) be an approximation to the location of a minim~ of the continuous function f (Xl, x2, . . . , Xn). Let h i be a number associated with x i, We define the following abbreviations: ~o ~ f(x~, x2,. o °, 4), f(X i + h i ) = f(Xl, X 2, ° ~ • ~ Xi + hi, . . . , Xn), z(x i h~, xj + hi) ~ f(Xl, . . . , X~ hi, o . ., Xj ÷ hi, . ° . , Xn), e~. Thus any variables not appearing in parentheses will be assumed to have the values at the point of approximation to the minimum. The method consists of fitting a complete second-degree polynomial in the n variables to the f~mction in the neighborhood of a minim~mLo Let this polynomial be n n n n-! (I) ~ fo ~ ~ bi ~i + 1⁄2 ~ a~ xi 2 ~ ~ T aij x~ ~j i=l i=l j =i+l i=l i To fit this polynomial to the function, we force the polynomial and the function to correspond at 1⁄2n(n + 3) points in addition to the point (Xl, . ° . , Xn, fo) ° The resulting set of simultaneous equations is solved for the coefficients b i and aij in (I). Then setting the partial derivatives of (I) equal to zero, we obtain a set of n simultaneous linear equations. The solution of this set gives a new approximation to the location of a minimum of the function.\",\"PeriodicalId\":109454,\"journal\":{\"name\":\"ACM '59\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1959-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM '59\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/612201.612285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM '59","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/612201.612285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

e, Xn)是连续函数f (Xl, x2,…)的最小值的近似值。Xn)。设h i为与x i相关的数,我们定义以下缩写:~o ~ f(x~, x2,)。, Xn), z(xi h~, xj + hi) ~ f(Xl,…× × × × × × × × × × × × × × × ×。°。, Xn), e~。因此,任何没有出现在括号中的变量将被假定为在近似值处具有最小值。该方法包括将n个变量的完全二阶多项式拟合到最小mLo的邻域f~函数中。设该多项式为n n n n n-!(I) ~ fo ~ bi ~ I + 1 / 2 ~ a~ xi 2 ~ ~ T aij x~ ~j I =l I =l j = I +l I =l I为了使这个多项式与函数在1 / 2n(n + 3)个点上对应,除了点(Xl,)。°。, Xn, fo)°对(i)中的系数b i和aij求出联立方程组,然后令(i)的偏导数为零,得到一组n个联立线性方程。这个集合的解给出了函数最小值位置的新近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method for finding a minimum of a multivariate function with applications to the reduction of missile and satellite data
Let (XI, X2, . . e , Xn) be an approximation to the location of a minim~ of the continuous function f (Xl, x2, . . . , Xn). Let h i be a number associated with x i, We define the following abbreviations: ~o ~ f(x~, x2,. o °, 4), f(X i + h i ) = f(Xl, X 2, ° ~ • ~ Xi + hi, . . . , Xn), z(x i h~, xj + hi) ~ f(Xl, . . . , X~ hi, o . ., Xj ÷ hi, . ° . , Xn), e~. Thus any variables not appearing in parentheses will be assumed to have the values at the point of approximation to the minimum. The method consists of fitting a complete second-degree polynomial in the n variables to the f~mction in the neighborhood of a minim~mLo Let this polynomial be n n n n-! (I) ~ fo ~ ~ bi ~i + 1⁄2 ~ a~ xi 2 ~ ~ T aij x~ ~j i=l i=l j =i+l i=l i To fit this polynomial to the function, we force the polynomial and the function to correspond at 1⁄2n(n + 3) points in addition to the point (Xl, . ° . , Xn, fo) ° The resulting set of simultaneous equations is solved for the coefficients b i and aij in (I). Then setting the partial derivatives of (I) equal to zero, we obtain a set of n simultaneous linear equations. The solution of this set gives a new approximation to the location of a minimum of the function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信