冷备系统可靠性基准置信下限由几何级数组成

Lisheng Yang, Haiying Zheng
{"title":"冷备系统可靠性基准置信下限由几何级数组成","authors":"Lisheng Yang, Haiying Zheng","doi":"10.1109/ICCIAUTOM.2011.6183951","DOIUrl":null,"url":null,"abstract":"This article is to discuss a cold standby system which consists of l series working components and n − 1 independent cold standby components. Suppose that the component follows geometric distribution. The precise Fiducial lower confidence limit for system reliability is obtained, when only a parameter is unknown. And when all of the parameters are unknown, a method is offered to resolve the Fiducial approximate lower confidence limit for system reliability. At the same time Monte Carlo simulation is carried out to verify the conclusions.","PeriodicalId":177039,"journal":{"name":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fiducial lower confidence limit for the reliability of cold standby system consists of geometric series components\",\"authors\":\"Lisheng Yang, Haiying Zheng\",\"doi\":\"10.1109/ICCIAUTOM.2011.6183951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is to discuss a cold standby system which consists of l series working components and n − 1 independent cold standby components. Suppose that the component follows geometric distribution. The precise Fiducial lower confidence limit for system reliability is obtained, when only a parameter is unknown. And when all of the parameters are unknown, a method is offered to resolve the Fiducial approximate lower confidence limit for system reliability. At the same time Monte Carlo simulation is carried out to verify the conclusions.\",\"PeriodicalId\":177039,\"journal\":{\"name\":\"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2011.6183951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6183951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一个由l个串联工作部件和n−1个独立冷备部件组成的冷备系统。假设分量遵循几何分布。在只有一个参数未知的情况下,得到了精确的系统可靠性基准置信下限。在所有参数都未知的情况下,给出了一种求解系统可靠性的基准近似置信下限的方法。同时进行了蒙特卡罗仿真,验证了所得结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fiducial lower confidence limit for the reliability of cold standby system consists of geometric series components
This article is to discuss a cold standby system which consists of l series working components and n − 1 independent cold standby components. Suppose that the component follows geometric distribution. The precise Fiducial lower confidence limit for system reliability is obtained, when only a parameter is unknown. And when all of the parameters are unknown, a method is offered to resolve the Fiducial approximate lower confidence limit for system reliability. At the same time Monte Carlo simulation is carried out to verify the conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信