改进的贝叶斯框架倒谱均值和方差归一化

N. Prasad, S. Umesh
{"title":"改进的贝叶斯框架倒谱均值和方差归一化","authors":"N. Prasad, S. Umesh","doi":"10.1109/ASRU.2013.6707722","DOIUrl":null,"url":null,"abstract":"Cepstral Mean and Variance Normalization (CMVN) is a computationally efficient normalization technique for noise robust speech recognition. The performance of CMVN is known to degrade for short utterances, due to insufficient data for parameter estimation and loss of discriminable information as all utterances are forced to have zero mean and unit variance. In this work, we propose to use posterior estimates of mean and variance in CMVN, instead of the maximum likelihood estimates. This Bayesian approach, in addition to providing a robust estimate of parameters, is also shown to preserve discriminable information without increase in computational cost, making it particularly relevant for Interactive Voice Response (IVR)-based applications. The relative WER reduction of this approach w.r.t. Cepstral Mean Normalization, CMVN and Histogram Equalization are (i) 40.1%, 27% and 4.3% with the Aurora2 database for all utterances, (ii) 25.7%, 38.6% and 30.4% with the Aurora2 database for short utterances, and (iii) 18.7%, 12.6% and 2.5% with the Aurora4 database.","PeriodicalId":265258,"journal":{"name":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Improved cepstral mean and variance normalization using Bayesian framework\",\"authors\":\"N. Prasad, S. Umesh\",\"doi\":\"10.1109/ASRU.2013.6707722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cepstral Mean and Variance Normalization (CMVN) is a computationally efficient normalization technique for noise robust speech recognition. The performance of CMVN is known to degrade for short utterances, due to insufficient data for parameter estimation and loss of discriminable information as all utterances are forced to have zero mean and unit variance. In this work, we propose to use posterior estimates of mean and variance in CMVN, instead of the maximum likelihood estimates. This Bayesian approach, in addition to providing a robust estimate of parameters, is also shown to preserve discriminable information without increase in computational cost, making it particularly relevant for Interactive Voice Response (IVR)-based applications. The relative WER reduction of this approach w.r.t. Cepstral Mean Normalization, CMVN and Histogram Equalization are (i) 40.1%, 27% and 4.3% with the Aurora2 database for all utterances, (ii) 25.7%, 38.6% and 30.4% with the Aurora2 database for short utterances, and (iii) 18.7%, 12.6% and 2.5% with the Aurora4 database.\",\"PeriodicalId\":265258,\"journal\":{\"name\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2013.6707722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2013.6707722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

倒谱均值方差归一化(CMVN)是一种计算效率高的噪声鲁棒语音识别归一化技术。众所周知,CMVN的性能对于短话语会下降,这是由于用于参数估计的数据不足,以及由于所有话语都被迫具有零均值和单位方差而导致的可判别信息的丢失。在这项工作中,我们建议在CMVN中使用均值和方差的后验估计,而不是最大似然估计。这种贝叶斯方法除了提供参数的鲁棒估计外,还显示出在不增加计算成本的情况下保留可区分信息,使其特别适用于基于交互式语音应答(IVR)的应用程序。在Aurora2数据库中,该方法对所有话语的相对加权加权降低率分别为(i) 40.1%、27%和4.3%;在Aurora2数据库中,对短话语的相对加权加权降低率分别为(ii) 25.7%、38.6%和30.4%;在Aurora4数据库中,相对加权加权降低率分别为18.7%、12.6%和2.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved cepstral mean and variance normalization using Bayesian framework
Cepstral Mean and Variance Normalization (CMVN) is a computationally efficient normalization technique for noise robust speech recognition. The performance of CMVN is known to degrade for short utterances, due to insufficient data for parameter estimation and loss of discriminable information as all utterances are forced to have zero mean and unit variance. In this work, we propose to use posterior estimates of mean and variance in CMVN, instead of the maximum likelihood estimates. This Bayesian approach, in addition to providing a robust estimate of parameters, is also shown to preserve discriminable information without increase in computational cost, making it particularly relevant for Interactive Voice Response (IVR)-based applications. The relative WER reduction of this approach w.r.t. Cepstral Mean Normalization, CMVN and Histogram Equalization are (i) 40.1%, 27% and 4.3% with the Aurora2 database for all utterances, (ii) 25.7%, 38.6% and 30.4% with the Aurora2 database for short utterances, and (iii) 18.7%, 12.6% and 2.5% with the Aurora4 database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信