一类鲁棒社会选择不可能定理的代数证明

Dvir Falik, E. Friedgut
{"title":"一类鲁棒社会选择不可能定理的代数证明","authors":"Dvir Falik, E. Friedgut","doi":"10.1109/FOCS.2011.72","DOIUrl":null,"url":null,"abstract":"An important element of social choice theory are impossibility theorems, such as Arrow's theorem and Gibbard-Satterthwaite's theorem, which state that under certain natural constraints, social choice mechanisms are impossible to construct. In recent years, beginning in Kalai'01, much work has been done in finding \\text it{robust} versions of these theorems, showing that impossibility remains even when the constraints are \\text it{almost} always satisfied. In this work we present an Algebraic scheme for producing such results. We demonstrate it for a variant of Arrow's theorem, found in Dokow and Holzman [5].","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Algebraic Proof of a Robust Social Choice Impossibility Theorem\",\"authors\":\"Dvir Falik, E. Friedgut\",\"doi\":\"10.1109/FOCS.2011.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important element of social choice theory are impossibility theorems, such as Arrow's theorem and Gibbard-Satterthwaite's theorem, which state that under certain natural constraints, social choice mechanisms are impossible to construct. In recent years, beginning in Kalai'01, much work has been done in finding \\\\text it{robust} versions of these theorems, showing that impossibility remains even when the constraints are \\\\text it{almost} always satisfied. In this work we present an Algebraic scheme for producing such results. We demonstrate it for a variant of Arrow's theorem, found in Dokow and Holzman [5].\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2011.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

社会选择理论的一个重要组成部分是不可能定理,如阿罗定理和吉巴德-萨特思韦特定理,这些定理指出,在某些自然约束下,社会选择机制是不可能构建的。近年来,从Kalai'01开始,已经做了很多工作来寻找这些定理的鲁棒版本,表明即使约束几乎总是满足,也不可能存在。在这项工作中,我们提出了一个代数方案来产生这样的结果。我们在dodoow和Holzman[5]中发现的阿罗定理的一个变体中证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algebraic Proof of a Robust Social Choice Impossibility Theorem
An important element of social choice theory are impossibility theorems, such as Arrow's theorem and Gibbard-Satterthwaite's theorem, which state that under certain natural constraints, social choice mechanisms are impossible to construct. In recent years, beginning in Kalai'01, much work has been done in finding \text it{robust} versions of these theorems, showing that impossibility remains even when the constraints are \text it{almost} always satisfied. In this work we present an Algebraic scheme for producing such results. We demonstrate it for a variant of Arrow's theorem, found in Dokow and Holzman [5].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信