Raunak M. Borwankar, Anurag Desai, M. Haider, Ludwig Reinhold, Y. Massoud
{"title":"尖峰神经网络中FitzHugh-Nagumo神经元模型的模拟实现","authors":"Raunak M. Borwankar, Anurag Desai, M. Haider, Ludwig Reinhold, Y. Massoud","doi":"10.1109/NEWCAS.2018.8585554","DOIUrl":null,"url":null,"abstract":"A low power analog implementation of FitzHugh-Nagumo (FHN) neuron model is presented in this paper for large scale spiking neural network and neuromorphic algorithm realization. The FHN neuron model is designed using $\\log $-domain low pass filters and translinear multipliers to emulate voltage-like variable with cubic non-linearity and a recovery variable. Various spiking behaviors observed in biological neurons are demonstrated in simulation results. The neuron model was designed in 45 nm CMOS process which has 1.6 nW and 40 nW power consumption at rest and for a single spiking event respectively.","PeriodicalId":112526,"journal":{"name":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"2023 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Analog Implementation of FitzHugh-Nagumo Neuron Model for Spiking Neural Networks\",\"authors\":\"Raunak M. Borwankar, Anurag Desai, M. Haider, Ludwig Reinhold, Y. Massoud\",\"doi\":\"10.1109/NEWCAS.2018.8585554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low power analog implementation of FitzHugh-Nagumo (FHN) neuron model is presented in this paper for large scale spiking neural network and neuromorphic algorithm realization. The FHN neuron model is designed using $\\\\log $-domain low pass filters and translinear multipliers to emulate voltage-like variable with cubic non-linearity and a recovery variable. Various spiking behaviors observed in biological neurons are demonstrated in simulation results. The neuron model was designed in 45 nm CMOS process which has 1.6 nW and 40 nW power consumption at rest and for a single spiking event respectively.\",\"PeriodicalId\":112526,\"journal\":{\"name\":\"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"volume\":\"2023 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2018.8585554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2018.8585554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Analog Implementation of FitzHugh-Nagumo Neuron Model for Spiking Neural Networks
A low power analog implementation of FitzHugh-Nagumo (FHN) neuron model is presented in this paper for large scale spiking neural network and neuromorphic algorithm realization. The FHN neuron model is designed using $\log $-domain low pass filters and translinear multipliers to emulate voltage-like variable with cubic non-linearity and a recovery variable. Various spiking behaviors observed in biological neurons are demonstrated in simulation results. The neuron model was designed in 45 nm CMOS process which has 1.6 nW and 40 nW power consumption at rest and for a single spiking event respectively.