尖峰神经网络中FitzHugh-Nagumo神经元模型的模拟实现

Raunak M. Borwankar, Anurag Desai, M. Haider, Ludwig Reinhold, Y. Massoud
{"title":"尖峰神经网络中FitzHugh-Nagumo神经元模型的模拟实现","authors":"Raunak M. Borwankar, Anurag Desai, M. Haider, Ludwig Reinhold, Y. Massoud","doi":"10.1109/NEWCAS.2018.8585554","DOIUrl":null,"url":null,"abstract":"A low power analog implementation of FitzHugh-Nagumo (FHN) neuron model is presented in this paper for large scale spiking neural network and neuromorphic algorithm realization. The FHN neuron model is designed using $\\log $-domain low pass filters and translinear multipliers to emulate voltage-like variable with cubic non-linearity and a recovery variable. Various spiking behaviors observed in biological neurons are demonstrated in simulation results. The neuron model was designed in 45 nm CMOS process which has 1.6 nW and 40 nW power consumption at rest and for a single spiking event respectively.","PeriodicalId":112526,"journal":{"name":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"2023 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Analog Implementation of FitzHugh-Nagumo Neuron Model for Spiking Neural Networks\",\"authors\":\"Raunak M. Borwankar, Anurag Desai, M. Haider, Ludwig Reinhold, Y. Massoud\",\"doi\":\"10.1109/NEWCAS.2018.8585554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low power analog implementation of FitzHugh-Nagumo (FHN) neuron model is presented in this paper for large scale spiking neural network and neuromorphic algorithm realization. The FHN neuron model is designed using $\\\\log $-domain low pass filters and translinear multipliers to emulate voltage-like variable with cubic non-linearity and a recovery variable. Various spiking behaviors observed in biological neurons are demonstrated in simulation results. The neuron model was designed in 45 nm CMOS process which has 1.6 nW and 40 nW power consumption at rest and for a single spiking event respectively.\",\"PeriodicalId\":112526,\"journal\":{\"name\":\"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"volume\":\"2023 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2018.8585554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2018.8585554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于FitzHugh-Nagumo (FHN)神经元模型的低功耗模拟实现,用于大规模峰值神经网络和神经形态算法的实现。FHN神经元模型采用$\log $域低通滤波器和跨线性乘法器来模拟具有三次非线性和恢复变量的类电压变量。仿真结果证明了在生物神经元中观察到的各种尖峰行为。神经元模型采用45 nm CMOS工艺设计,静息和单次峰值功耗分别为1.6 nW和40 nW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Analog Implementation of FitzHugh-Nagumo Neuron Model for Spiking Neural Networks
A low power analog implementation of FitzHugh-Nagumo (FHN) neuron model is presented in this paper for large scale spiking neural network and neuromorphic algorithm realization. The FHN neuron model is designed using $\log $-domain low pass filters and translinear multipliers to emulate voltage-like variable with cubic non-linearity and a recovery variable. Various spiking behaviors observed in biological neurons are demonstrated in simulation results. The neuron model was designed in 45 nm CMOS process which has 1.6 nW and 40 nW power consumption at rest and for a single spiking event respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信