部分入侵BIST测试调度中的细粒度并发性

I. Harris, A. Orailoglu
{"title":"部分入侵BIST测试调度中的细粒度并发性","authors":"I. Harris, A. Orailoglu","doi":"10.1109/EDTC.1994.326888","DOIUrl":null,"url":null,"abstract":"Partial-intrusion BIST reduces area overhead and increases chip performance by reducing the number of test registers, but it requires a test schedule definition. The scheduling of the tests impacts directly the test application time. This paper presents a novel model of the test plan scheduling problem for partial-intrusion BIST circuits. Test application time is reduced by performing scheduling to allow the execution of test plans in a pipelined fashion. Test scheduling conflicts are avoided by exploiting the parallelism which is revealed by a flexible test representation; consequently, test concurrency is increased. Computational efficiency is gained by performing incremental, subtractive heuristic test scheduling decisions. The effects of each test decision are rigorously propagated, limiting the test scheduling possibilities to only those which lead to a feasible scheduling solution. Experimental results show that high levels of test concurrency are achieved in a computationally efficient manner by limiting the state of the scheduling search space using conflict probability estimation and rigorous pruning of infeasible test options.<<ETX>>","PeriodicalId":244297,"journal":{"name":"Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fine-grained concurrency in test scheduling for partial-intrusion BIST\",\"authors\":\"I. Harris, A. Orailoglu\",\"doi\":\"10.1109/EDTC.1994.326888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial-intrusion BIST reduces area overhead and increases chip performance by reducing the number of test registers, but it requires a test schedule definition. The scheduling of the tests impacts directly the test application time. This paper presents a novel model of the test plan scheduling problem for partial-intrusion BIST circuits. Test application time is reduced by performing scheduling to allow the execution of test plans in a pipelined fashion. Test scheduling conflicts are avoided by exploiting the parallelism which is revealed by a flexible test representation; consequently, test concurrency is increased. Computational efficiency is gained by performing incremental, subtractive heuristic test scheduling decisions. The effects of each test decision are rigorously propagated, limiting the test scheduling possibilities to only those which lead to a feasible scheduling solution. Experimental results show that high levels of test concurrency are achieved in a computationally efficient manner by limiting the state of the scheduling search space using conflict probability estimation and rigorous pruning of infeasible test options.<<ETX>>\",\"PeriodicalId\":244297,\"journal\":{\"name\":\"Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDTC.1994.326888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTC.1994.326888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

部分入侵BIST通过减少测试寄存器的数量来减少面积开销和提高芯片性能,但它需要一个测试计划定义。测试的调度直接影响测试应用程序的时间。本文提出了一种新的部分入侵测试计划调度模型。通过执行调度来允许以流水线方式执行测试计划,从而减少了测试应用程序的时间。利用灵活的测试表示所揭示的并行性,避免了测试调度冲突;因此,测试并发性得到了提高。计算效率是通过执行增量、减法启发式测试调度决策来获得的。每个测试决策的影响都是严格传播的,将测试调度的可能性限制为只有那些导致可行调度解决方案的可能性。实验结果表明,通过使用冲突概率估计和严格修剪不可行的测试选项来限制调度搜索空间的状态,以计算效率高的方式实现了高水平的测试并发性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-grained concurrency in test scheduling for partial-intrusion BIST
Partial-intrusion BIST reduces area overhead and increases chip performance by reducing the number of test registers, but it requires a test schedule definition. The scheduling of the tests impacts directly the test application time. This paper presents a novel model of the test plan scheduling problem for partial-intrusion BIST circuits. Test application time is reduced by performing scheduling to allow the execution of test plans in a pipelined fashion. Test scheduling conflicts are avoided by exploiting the parallelism which is revealed by a flexible test representation; consequently, test concurrency is increased. Computational efficiency is gained by performing incremental, subtractive heuristic test scheduling decisions. The effects of each test decision are rigorously propagated, limiting the test scheduling possibilities to only those which lead to a feasible scheduling solution. Experimental results show that high levels of test concurrency are achieved in a computationally efficient manner by limiting the state of the scheduling search space using conflict probability estimation and rigorous pruning of infeasible test options.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信