基于深度学习特征融合的微观疟疾寄生图像分类

Muhammad Asim
{"title":"基于深度学习特征融合的微观疟疾寄生图像分类","authors":"Muhammad Asim","doi":"10.54692/lgurjcsit.2023.0702473","DOIUrl":null,"url":null,"abstract":"An infectious disease that causes a chronic and potentially life-threatening infection caused by microorganisms of the Plasmodium class, is malaria, or malarial disease. It is critical to detect the presence of Malaria parasites as early as possible to ensure that antimalarial treatment is adequate to cure the particular type of Plasmodium. This is to reduce death rates and to focus on various infections in the event of an adverse outcome. The purpose of this study was to develop an artificial intelligence approach capable of separating parasitized erythrocytes from normal basophilic erythrocytes as well as platelets overlying the red blood cells to overcome the high cost of Ma-laria diagnostic equipment. The tone and texture characteristics of erythrocyte images were extracted using histo-gram thresholds and watershed methods, and then fused with Squeeze Net and ShuffleNet algorithms. The measures included planning, preparing, approving, and testing Deep Convolution Neural Network Segmentation without preparation using a graphic processor unit. A total of 96 percent accuracy and specificity was obtained for the position of malaria in red blood cells based on the results of all of the tests. It has been demonstrated that deep learning can be effective in the field of clinical pathology. This provides new directions for development as well as increasing awareness of researchers in this field.","PeriodicalId":197260,"journal":{"name":"Lahore Garrison University Research Journal of Computer Science and Information Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Microscopic Malaria Parasitized Images Using Deep Learning Feature Fusion\",\"authors\":\"Muhammad Asim\",\"doi\":\"10.54692/lgurjcsit.2023.0702473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An infectious disease that causes a chronic and potentially life-threatening infection caused by microorganisms of the Plasmodium class, is malaria, or malarial disease. It is critical to detect the presence of Malaria parasites as early as possible to ensure that antimalarial treatment is adequate to cure the particular type of Plasmodium. This is to reduce death rates and to focus on various infections in the event of an adverse outcome. The purpose of this study was to develop an artificial intelligence approach capable of separating parasitized erythrocytes from normal basophilic erythrocytes as well as platelets overlying the red blood cells to overcome the high cost of Ma-laria diagnostic equipment. The tone and texture characteristics of erythrocyte images were extracted using histo-gram thresholds and watershed methods, and then fused with Squeeze Net and ShuffleNet algorithms. The measures included planning, preparing, approving, and testing Deep Convolution Neural Network Segmentation without preparation using a graphic processor unit. A total of 96 percent accuracy and specificity was obtained for the position of malaria in red blood cells based on the results of all of the tests. It has been demonstrated that deep learning can be effective in the field of clinical pathology. This provides new directions for development as well as increasing awareness of researchers in this field.\",\"PeriodicalId\":197260,\"journal\":{\"name\":\"Lahore Garrison University Research Journal of Computer Science and Information Technology\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lahore Garrison University Research Journal of Computer Science and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54692/lgurjcsit.2023.0702473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lahore Garrison University Research Journal of Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54692/lgurjcsit.2023.0702473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

疟疾是一种由疟原虫类微生物引起的慢性并可能危及生命的传染病。至关重要的是尽早发现疟疾寄生虫的存在,以确保抗疟疾治疗足以治愈特定类型的疟原虫。这是为了降低死亡率,并在出现不良后果时将重点放在各种感染上。本研究的目的是开发一种人工智能方法,能够将寄生红细胞与正常嗜碱性红细胞以及覆盖在红细胞上的血小板分离开来,以克服疟疾诊断设备的高成本。采用直方图阈值法和分水岭法提取红细胞图像的色调和纹理特征,然后结合Squeeze Net和ShuffleNet算法进行融合。这些措施包括计划、准备、批准和测试深度卷积神经网络分割,而无需使用图形处理器单元进行准备。根据所有测试的结果,疟疾在红细胞中的位置获得了96%的准确性和特异性。事实证明,深度学习在临床病理学领域是有效的。这为该领域的发展提供了新的方向,也提高了研究人员的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Microscopic Malaria Parasitized Images Using Deep Learning Feature Fusion
An infectious disease that causes a chronic and potentially life-threatening infection caused by microorganisms of the Plasmodium class, is malaria, or malarial disease. It is critical to detect the presence of Malaria parasites as early as possible to ensure that antimalarial treatment is adequate to cure the particular type of Plasmodium. This is to reduce death rates and to focus on various infections in the event of an adverse outcome. The purpose of this study was to develop an artificial intelligence approach capable of separating parasitized erythrocytes from normal basophilic erythrocytes as well as platelets overlying the red blood cells to overcome the high cost of Ma-laria diagnostic equipment. The tone and texture characteristics of erythrocyte images were extracted using histo-gram thresholds and watershed methods, and then fused with Squeeze Net and ShuffleNet algorithms. The measures included planning, preparing, approving, and testing Deep Convolution Neural Network Segmentation without preparation using a graphic processor unit. A total of 96 percent accuracy and specificity was obtained for the position of malaria in red blood cells based on the results of all of the tests. It has been demonstrated that deep learning can be effective in the field of clinical pathology. This provides new directions for development as well as increasing awareness of researchers in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信