流式分段常数模型

Paul J. Ausbeck
{"title":"流式分段常数模型","authors":"Paul J. Ausbeck","doi":"10.1109/DCC.1999.755670","DOIUrl":null,"url":null,"abstract":"The piecewise-constant image model (PWC) is remarkably effective for compressing palette images. This paper discloses a new streaming version of PWC that retains the excellent compression efficiency of the original algorithm while dramatically enhancing compression performance. Further, compression throughput is made more constant, making it possible to code sparse images very quickly.","PeriodicalId":103598,"journal":{"name":"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A streaming piecewise-constant model\",\"authors\":\"Paul J. Ausbeck\",\"doi\":\"10.1109/DCC.1999.755670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The piecewise-constant image model (PWC) is remarkably effective for compressing palette images. This paper discloses a new streaming version of PWC that retains the excellent compression efficiency of the original algorithm while dramatically enhancing compression performance. Further, compression throughput is made more constant, making it possible to code sparse images very quickly.\",\"PeriodicalId\":103598,\"journal\":{\"name\":\"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1999.755670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1999.755670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

分段常数图像模型(PWC)对于调色板图像的压缩是非常有效的。本文提出了一种新的流媒体PWC算法,在保留原有算法优良压缩效率的同时,压缩性能得到了显著提高。此外,压缩吞吐量变得更加稳定,使得非常快速地编码稀疏图像成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A streaming piecewise-constant model
The piecewise-constant image model (PWC) is remarkably effective for compressing palette images. This paper discloses a new streaming version of PWC that retains the excellent compression efficiency of the original algorithm while dramatically enhancing compression performance. Further, compression throughput is made more constant, making it possible to code sparse images very quickly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信