{"title":"基于CMOS工艺的量子阱热电能量采集器设计","authors":"S. M. Yang, G. Sheu","doi":"10.1109/NANO.2013.6720796","DOIUrl":null,"url":null,"abstract":"This work aims at improving the energy harvester performance by using low-dimensional thermoelectric materials. A micro-thermoelectric generator with quantum well thermocouples is developed by state-of-the-art CMOS (Complementary metal-oxide semiconductor) process. A relaxation-time model is applied to analyze the characteristic length of silicon germanium quantum well, and a thermal model is also applied to calculate the thermocouple size for optimal performance by matching the thermal/electrical resistance. Analysis based on TSMC 0.35μm 3P3M (3-poly and 3-metal layers) BiCMOS process shows that the quantum well thermocouples (0.05 μm Si0.9Ge0.1 quantum well on 0.300 μm P-thermoleg and 0.280 μm N-thermoleg) has the best performance. that the power factor and voltage factor is 0.241 μW/cm2K2 and 10.442 V/cm2K.","PeriodicalId":189707,"journal":{"name":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of quantum well thermoelectric energy harvester by CMOS process\",\"authors\":\"S. M. Yang, G. Sheu\",\"doi\":\"10.1109/NANO.2013.6720796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims at improving the energy harvester performance by using low-dimensional thermoelectric materials. A micro-thermoelectric generator with quantum well thermocouples is developed by state-of-the-art CMOS (Complementary metal-oxide semiconductor) process. A relaxation-time model is applied to analyze the characteristic length of silicon germanium quantum well, and a thermal model is also applied to calculate the thermocouple size for optimal performance by matching the thermal/electrical resistance. Analysis based on TSMC 0.35μm 3P3M (3-poly and 3-metal layers) BiCMOS process shows that the quantum well thermocouples (0.05 μm Si0.9Ge0.1 quantum well on 0.300 μm P-thermoleg and 0.280 μm N-thermoleg) has the best performance. that the power factor and voltage factor is 0.241 μW/cm2K2 and 10.442 V/cm2K.\",\"PeriodicalId\":189707,\"journal\":{\"name\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2013.6720796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2013.6720796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of quantum well thermoelectric energy harvester by CMOS process
This work aims at improving the energy harvester performance by using low-dimensional thermoelectric materials. A micro-thermoelectric generator with quantum well thermocouples is developed by state-of-the-art CMOS (Complementary metal-oxide semiconductor) process. A relaxation-time model is applied to analyze the characteristic length of silicon germanium quantum well, and a thermal model is also applied to calculate the thermocouple size for optimal performance by matching the thermal/electrical resistance. Analysis based on TSMC 0.35μm 3P3M (3-poly and 3-metal layers) BiCMOS process shows that the quantum well thermocouples (0.05 μm Si0.9Ge0.1 quantum well on 0.300 μm P-thermoleg and 0.280 μm N-thermoleg) has the best performance. that the power factor and voltage factor is 0.241 μW/cm2K2 and 10.442 V/cm2K.