多智能体调度系统中元启发式参数调整的多学徒学习

I. Pereira, A. Madureira, Paulo Moura Oliveira
{"title":"多智能体调度系统中元启发式参数调整的多学徒学习","authors":"I. Pereira, A. Madureira, Paulo Moura Oliveira","doi":"10.1109/NaBIC.2012.6402236","DOIUrl":null,"url":null,"abstract":"The scheduling problem is considered in complexity theory as a NP-hard combinatorial optimization problem. Meta-heuristics proved to be very useful in the resolution of this class of problems. However, these techniques require parameter tuning which is a very hard task to perform. A Case-based Reasoning module is proposed in order to solve the parameter tuning problem in a Multi-Agent Scheduling System. A computational study is performed in order to evaluate the proposed CBR module performance.","PeriodicalId":103091,"journal":{"name":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-apprentice learning for meta-heuristics parameter tuning in a Multi Agent Scheduling System\",\"authors\":\"I. Pereira, A. Madureira, Paulo Moura Oliveira\",\"doi\":\"10.1109/NaBIC.2012.6402236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scheduling problem is considered in complexity theory as a NP-hard combinatorial optimization problem. Meta-heuristics proved to be very useful in the resolution of this class of problems. However, these techniques require parameter tuning which is a very hard task to perform. A Case-based Reasoning module is proposed in order to solve the parameter tuning problem in a Multi-Agent Scheduling System. A computational study is performed in order to evaluate the proposed CBR module performance.\",\"PeriodicalId\":103091,\"journal\":{\"name\":\"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NaBIC.2012.6402236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaBIC.2012.6402236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在复杂性理论中,调度问题被认为是一个NP-hard组合优化问题。元启发式在解决这类问题时被证明是非常有用的。然而,这些技术需要参数调优,这是一项非常困难的任务。为了解决多智能体调度系统中的参数调整问题,提出了一种基于实例的推理模块。为了评估所提出的CBR模块的性能,进行了计算研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-apprentice learning for meta-heuristics parameter tuning in a Multi Agent Scheduling System
The scheduling problem is considered in complexity theory as a NP-hard combinatorial optimization problem. Meta-heuristics proved to be very useful in the resolution of this class of problems. However, these techniques require parameter tuning which is a very hard task to perform. A Case-based Reasoning module is proposed in order to solve the parameter tuning problem in a Multi-Agent Scheduling System. A computational study is performed in order to evaluate the proposed CBR module performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信