羟基山酮对人肝癌细胞的抗癌活性评价

Y. S. Kurniawan, Nela Fatmasari, J. Jumina, H. D. Pranowo, E. N. Sholikhah
{"title":"羟基山酮对人肝癌细胞的抗癌活性评价","authors":"Y. S. Kurniawan, Nela Fatmasari, J. Jumina, H. D. Pranowo, E. N. Sholikhah","doi":"10.47352/jmans.2774-3047.165","DOIUrl":null,"url":null,"abstract":"Nowadays, cancer is one of the most fatal diseases in developed and developing countries. Therefore, it is an urgent need to find more effective anticancer drugs among the recent commercially available standard drugs. Xanthone derivatives have been researched as anticancer drugs due to their ease of synthesis and structure modification, as well as their excellent anticancer activity. In this work, the in vitro anticancer activity of hydroxyxanthones against the human liver carcinoma cell line (HepG2) was evaluated. Among the twenty-two hydroxyxanthones, 1,3,6,8-tetrahydroxyxanthone was found as the most active anticancer agent with an IC50 value of 9.18 μM, which was better than doxorubicin as the standard drug. From the molecular docking studies against topoisomeraseIIα and two c-KIT protein kinases, 1,3,6,8-tetrahydroxyxanthone yielded strong binding energy in a range of -25.48 to -30.42 kJ/mol. The 1,3,6,8-tetrahydroxyxanthone could bind on the active site of these protein receptors through hydrogen bonds with key amino acid residues (Glu640, Cys673, Gln767, Met769, Asp810, and Asp831), as well as nitrogen bases (Adenine12 and Guanine13), thus leading to the death of HepG2 cancer cells through the apoptosis mechanism.","PeriodicalId":264018,"journal":{"name":"Journal of Multidisciplinary Applied Natural Science","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of The Anticancer Activity of Hydroxyxanthones Against Human Liver Carcinoma Cell Line\",\"authors\":\"Y. S. Kurniawan, Nela Fatmasari, J. Jumina, H. D. Pranowo, E. N. Sholikhah\",\"doi\":\"10.47352/jmans.2774-3047.165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, cancer is one of the most fatal diseases in developed and developing countries. Therefore, it is an urgent need to find more effective anticancer drugs among the recent commercially available standard drugs. Xanthone derivatives have been researched as anticancer drugs due to their ease of synthesis and structure modification, as well as their excellent anticancer activity. In this work, the in vitro anticancer activity of hydroxyxanthones against the human liver carcinoma cell line (HepG2) was evaluated. Among the twenty-two hydroxyxanthones, 1,3,6,8-tetrahydroxyxanthone was found as the most active anticancer agent with an IC50 value of 9.18 μM, which was better than doxorubicin as the standard drug. From the molecular docking studies against topoisomeraseIIα and two c-KIT protein kinases, 1,3,6,8-tetrahydroxyxanthone yielded strong binding energy in a range of -25.48 to -30.42 kJ/mol. The 1,3,6,8-tetrahydroxyxanthone could bind on the active site of these protein receptors through hydrogen bonds with key amino acid residues (Glu640, Cys673, Gln767, Met769, Asp810, and Asp831), as well as nitrogen bases (Adenine12 and Guanine13), thus leading to the death of HepG2 cancer cells through the apoptosis mechanism.\",\"PeriodicalId\":264018,\"journal\":{\"name\":\"Journal of Multidisciplinary Applied Natural Science\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multidisciplinary Applied Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47352/jmans.2774-3047.165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multidisciplinary Applied Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47352/jmans.2774-3047.165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,癌症是发达国家和发展中国家最致命的疾病之一。因此,迫切需要在近期市售的标准药物中寻找更有效的抗癌药物。山酮衍生物因其易于合成和结构修饰,且具有良好的抗癌活性而成为抗癌药物研究的热点。本文研究了羟基山酮对人肝癌细胞株HepG2的体外抗肿瘤活性。在22种羟基山酮中,1,3,6,8-四羟基山酮的抗癌活性最高,IC50值为9.18 μM,优于阿霉素作为标准药物。通过对拓扑异构酶eii α和两种c-KIT蛋白激酶的分子对接研究,1,3,6,8-四羟基口山酮的结合能在-25.48 ~ -30.42 kJ/mol之间。1,3,6,8-四羟基口山酮可以通过与关键氨基酸残基(Glu640、Cys673、Gln767、Met769、Asp810和Asp831)以及氮碱基(Adenine12和Guanine13)的氢键结合在这些蛋白受体的活性位点上,从而通过凋亡机制导致HepG2癌细胞死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of The Anticancer Activity of Hydroxyxanthones Against Human Liver Carcinoma Cell Line
Nowadays, cancer is one of the most fatal diseases in developed and developing countries. Therefore, it is an urgent need to find more effective anticancer drugs among the recent commercially available standard drugs. Xanthone derivatives have been researched as anticancer drugs due to their ease of synthesis and structure modification, as well as their excellent anticancer activity. In this work, the in vitro anticancer activity of hydroxyxanthones against the human liver carcinoma cell line (HepG2) was evaluated. Among the twenty-two hydroxyxanthones, 1,3,6,8-tetrahydroxyxanthone was found as the most active anticancer agent with an IC50 value of 9.18 μM, which was better than doxorubicin as the standard drug. From the molecular docking studies against topoisomeraseIIα and two c-KIT protein kinases, 1,3,6,8-tetrahydroxyxanthone yielded strong binding energy in a range of -25.48 to -30.42 kJ/mol. The 1,3,6,8-tetrahydroxyxanthone could bind on the active site of these protein receptors through hydrogen bonds with key amino acid residues (Glu640, Cys673, Gln767, Met769, Asp810, and Asp831), as well as nitrogen bases (Adenine12 and Guanine13), thus leading to the death of HepG2 cancer cells through the apoptosis mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信