同时概念抽取的基于本体的事后解释*

A. Ponomarev, Anton Agafonov
{"title":"同时概念抽取的基于本体的事后解释*","authors":"A. Ponomarev, Anton Agafonov","doi":"10.1109/ICMLA55696.2022.00147","DOIUrl":null,"url":null,"abstract":"Ontology-based explanation techniques allow one to get explanation why a neural network arrived to some conclusion using human-understandable terms and their formal definitions. The paper proposes a method to build post-hoc ontology-based explanations by training a multi-label neural network mapping the activations of the specified \"black box\" network to ontology concepts. In order to simplify training of such network we employ semantic loss, taking into account relationships between concepts. The experiment with a synthetic dataset shows that the proposed method can generate accurate ontology-based explanations of a given network.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ontology-Based Post-Hoc Explanations via Simultaneous Concept Extraction*\",\"authors\":\"A. Ponomarev, Anton Agafonov\",\"doi\":\"10.1109/ICMLA55696.2022.00147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ontology-based explanation techniques allow one to get explanation why a neural network arrived to some conclusion using human-understandable terms and their formal definitions. The paper proposes a method to build post-hoc ontology-based explanations by training a multi-label neural network mapping the activations of the specified \\\"black box\\\" network to ontology concepts. In order to simplify training of such network we employ semantic loss, taking into account relationships between concepts. The experiment with a synthetic dataset shows that the proposed method can generate accurate ontology-based explanations of a given network.\",\"PeriodicalId\":128160,\"journal\":{\"name\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA55696.2022.00147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于本体的解释技术允许人们使用人类可理解的术语及其正式定义来解释为什么神经网络得出某些结论。本文提出了一种通过训练多标签神经网络将指定的“黑箱”网络的激活映射到本体概念来构建基于本体的事后解释的方法。为了简化这种网络的训练,我们考虑了概念之间的关系,使用了语义损失。在一个合成数据集上的实验表明,该方法可以对给定的网络生成准确的基于本体的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ontology-Based Post-Hoc Explanations via Simultaneous Concept Extraction*
Ontology-based explanation techniques allow one to get explanation why a neural network arrived to some conclusion using human-understandable terms and their formal definitions. The paper proposes a method to build post-hoc ontology-based explanations by training a multi-label neural network mapping the activations of the specified "black box" network to ontology concepts. In order to simplify training of such network we employ semantic loss, taking into account relationships between concepts. The experiment with a synthetic dataset shows that the proposed method can generate accurate ontology-based explanations of a given network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信