Atau Tanaka, Balandino Di Donato, Michael Zbyszynski, G. Roks
{"title":"为连续的声音交互设计手势","authors":"Atau Tanaka, Balandino Di Donato, Michael Zbyszynski, G. Roks","doi":"10.5281/zenodo.3672916","DOIUrl":null,"url":null,"abstract":"We present a system that allows users to try different ways to train neural networks and temporal modelling to asso- ciate gestures with time-varying sound. We created a soft- ware framework for this and evaluated it in a workshop- based study. We build upon research in sound tracing and mapping-by-demonstration to ask participants to de- sign gestures for performing time-varying sounds using a multimodal, inertial measurement (IMU) and muscle sens- ing (EMG) device. We presented the user with two classical techniques from the literature, Static Position regression and Hidden Markov based temporal modelling, and pro- pose a new technique for capturing gesture anchor points on the fly as training data for neural network based regression, called Windowed Regression. Our results show trade- offs between accurate, predictable reproduction of source sounds and exploration of the gesture-sound space. Several users were attracted to our windowed regression technique. This paper will be of interest to musicians engaged in going from sound design to gesture design and offers a workflow for interactive machine learning.","PeriodicalId":161317,"journal":{"name":"New Interfaces for Musical Expression","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Designing Gestures for Continuous Sonic Interaction\",\"authors\":\"Atau Tanaka, Balandino Di Donato, Michael Zbyszynski, G. Roks\",\"doi\":\"10.5281/zenodo.3672916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a system that allows users to try different ways to train neural networks and temporal modelling to asso- ciate gestures with time-varying sound. We created a soft- ware framework for this and evaluated it in a workshop- based study. We build upon research in sound tracing and mapping-by-demonstration to ask participants to de- sign gestures for performing time-varying sounds using a multimodal, inertial measurement (IMU) and muscle sens- ing (EMG) device. We presented the user with two classical techniques from the literature, Static Position regression and Hidden Markov based temporal modelling, and pro- pose a new technique for capturing gesture anchor points on the fly as training data for neural network based regression, called Windowed Regression. Our results show trade- offs between accurate, predictable reproduction of source sounds and exploration of the gesture-sound space. Several users were attracted to our windowed regression technique. This paper will be of interest to musicians engaged in going from sound design to gesture design and offers a workflow for interactive machine learning.\",\"PeriodicalId\":161317,\"journal\":{\"name\":\"New Interfaces for Musical Expression\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Interfaces for Musical Expression\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/zenodo.3672916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Interfaces for Musical Expression","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/zenodo.3672916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing Gestures for Continuous Sonic Interaction
We present a system that allows users to try different ways to train neural networks and temporal modelling to asso- ciate gestures with time-varying sound. We created a soft- ware framework for this and evaluated it in a workshop- based study. We build upon research in sound tracing and mapping-by-demonstration to ask participants to de- sign gestures for performing time-varying sounds using a multimodal, inertial measurement (IMU) and muscle sens- ing (EMG) device. We presented the user with two classical techniques from the literature, Static Position regression and Hidden Markov based temporal modelling, and pro- pose a new technique for capturing gesture anchor points on the fly as training data for neural network based regression, called Windowed Regression. Our results show trade- offs between accurate, predictable reproduction of source sounds and exploration of the gesture-sound space. Several users were attracted to our windowed regression technique. This paper will be of interest to musicians engaged in going from sound design to gesture design and offers a workflow for interactive machine learning.