一种有效的序列约束半监督聚类算法

Jinfeng Yi, Lijun Zhang, Tianbao Yang, W. Liu, Jun Wang
{"title":"一种有效的序列约束半监督聚类算法","authors":"Jinfeng Yi, Lijun Zhang, Tianbao Yang, W. Liu, Jun Wang","doi":"10.1145/2783258.2783389","DOIUrl":null,"url":null,"abstract":"Semi-supervised clustering leverages side information such as pairwise constraints to guide clustering procedures. Despite promising progress, existing semi-supervised clustering approaches overlook the condition of side information being generated sequentially, which is a natural setting arising in numerous real-world applications such as social network and e-commerce system analysis. Given emerged new constraints, classical semi-supervised clustering algorithms need to re-optimize their objectives over all data samples and constraints in availability, which prevents them from efficiently updating the obtained data partitions. To address this challenge, we propose an efficient dynamic semi-supervised clustering framework that casts the clustering problem into a search problem over a feasible convex set, i.e., a convex hull with its extreme points being an ensemble of m data partitions. According to the principle of ensemble clustering, the optimal partition lies in the convex hull, and can thus be uniquely represented by an m-dimensional probability simplex vector. As such, the dynamic semi-supervised clustering problem is simplified to the problem of updating a probability simplex vector subject to the newly received pairwise constraints. We then develop a computationally efficient updating procedure to update the probability simplex vector in O(m2) time, irrespective of the data size n. Our empirical studies on several real-world benchmark datasets show that the proposed algorithm outperforms the state-of-the-art semi-supervised clustering algorithms with visible performance gain and significantly reduced running time.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"An Efficient Semi-Supervised Clustering Algorithm with Sequential Constraints\",\"authors\":\"Jinfeng Yi, Lijun Zhang, Tianbao Yang, W. Liu, Jun Wang\",\"doi\":\"10.1145/2783258.2783389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-supervised clustering leverages side information such as pairwise constraints to guide clustering procedures. Despite promising progress, existing semi-supervised clustering approaches overlook the condition of side information being generated sequentially, which is a natural setting arising in numerous real-world applications such as social network and e-commerce system analysis. Given emerged new constraints, classical semi-supervised clustering algorithms need to re-optimize their objectives over all data samples and constraints in availability, which prevents them from efficiently updating the obtained data partitions. To address this challenge, we propose an efficient dynamic semi-supervised clustering framework that casts the clustering problem into a search problem over a feasible convex set, i.e., a convex hull with its extreme points being an ensemble of m data partitions. According to the principle of ensemble clustering, the optimal partition lies in the convex hull, and can thus be uniquely represented by an m-dimensional probability simplex vector. As such, the dynamic semi-supervised clustering problem is simplified to the problem of updating a probability simplex vector subject to the newly received pairwise constraints. We then develop a computationally efficient updating procedure to update the probability simplex vector in O(m2) time, irrespective of the data size n. Our empirical studies on several real-world benchmark datasets show that the proposed algorithm outperforms the state-of-the-art semi-supervised clustering algorithms with visible performance gain and significantly reduced running time.\",\"PeriodicalId\":243428,\"journal\":{\"name\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2783258.2783389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2783389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

半监督聚类利用诸如成对约束之类的侧信息来指导聚类过程。尽管取得了很好的进展,但现有的半监督聚类方法忽略了侧信息顺序生成的条件,这是许多现实世界应用(如社交网络和电子商务系统分析)中出现的自然设置。鉴于出现了新的约束,传统的半监督聚类算法需要在所有数据样本和可用性约束上重新优化其目标,这阻碍了它们有效地更新获得的数据分区。为了解决这一挑战,我们提出了一个有效的动态半监督聚类框架,将聚类问题转化为可行凸集上的搜索问题,即一个凸包,其极值点是m个数据分区的集合。根据集合聚类的原理,最优分区位于凸包中,因此可以用一个m维概率单纯形向量唯一地表示。因此,将动态半监督聚类问题简化为根据新接收到的成对约束更新概率单纯形向量的问题。然后,我们开发了一个计算效率高的更新过程,在O(m2)时间内更新概率单纯形向量,而不考虑数据大小n。我们对几个真实世界基准数据集的实证研究表明,所提出的算法优于最先进的半监督聚类算法,具有明显的性能增益和显着减少的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Semi-Supervised Clustering Algorithm with Sequential Constraints
Semi-supervised clustering leverages side information such as pairwise constraints to guide clustering procedures. Despite promising progress, existing semi-supervised clustering approaches overlook the condition of side information being generated sequentially, which is a natural setting arising in numerous real-world applications such as social network and e-commerce system analysis. Given emerged new constraints, classical semi-supervised clustering algorithms need to re-optimize their objectives over all data samples and constraints in availability, which prevents them from efficiently updating the obtained data partitions. To address this challenge, we propose an efficient dynamic semi-supervised clustering framework that casts the clustering problem into a search problem over a feasible convex set, i.e., a convex hull with its extreme points being an ensemble of m data partitions. According to the principle of ensemble clustering, the optimal partition lies in the convex hull, and can thus be uniquely represented by an m-dimensional probability simplex vector. As such, the dynamic semi-supervised clustering problem is simplified to the problem of updating a probability simplex vector subject to the newly received pairwise constraints. We then develop a computationally efficient updating procedure to update the probability simplex vector in O(m2) time, irrespective of the data size n. Our empirical studies on several real-world benchmark datasets show that the proposed algorithm outperforms the state-of-the-art semi-supervised clustering algorithms with visible performance gain and significantly reduced running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信