灰色神经预测系统

Yen-Tseng Hsu, Jerome Yeh
{"title":"灰色神经预测系统","authors":"Yen-Tseng Hsu, Jerome Yeh","doi":"10.1109/ISSPA.1999.818132","DOIUrl":null,"url":null,"abstract":"In this paper, a new nonlinear forecasting system using a grey predictor model and neural network tuner is proposed. This paper puts its emphasis on a few data and incomplete information to build the predictive system, excavates the connotative essence of a signal from the GM (1,1) predictor and refers to anomalistic (over predictive error) conditions to build the neural tuner database. So in the forecasting model the GM (1,1) model system predictive value will be appreciably modified while the anomalistic condition occurs. Simulation in well-known Mackey-Glass time series is presented to demonstrate the performance of the proposed predictive system.","PeriodicalId":302569,"journal":{"name":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Grey-neural forecasting system\",\"authors\":\"Yen-Tseng Hsu, Jerome Yeh\",\"doi\":\"10.1109/ISSPA.1999.818132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new nonlinear forecasting system using a grey predictor model and neural network tuner is proposed. This paper puts its emphasis on a few data and incomplete information to build the predictive system, excavates the connotative essence of a signal from the GM (1,1) predictor and refers to anomalistic (over predictive error) conditions to build the neural tuner database. So in the forecasting model the GM (1,1) model system predictive value will be appreciably modified while the anomalistic condition occurs. Simulation in well-known Mackey-Glass time series is presented to demonstrate the performance of the proposed predictive system.\",\"PeriodicalId\":302569,\"journal\":{\"name\":\"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.1999.818132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1999.818132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种基于灰色预测模型和神经网络调谐器的非线性预测系统。本文强调在少量数据和不完全信息的情况下构建预测系统,从GM(1,1)预测器中挖掘信号的内涵本质,并参考异常(超预测误差)条件构建神经调谐器数据库。因此在预测模型中,GM(1,1)模型系统的预测值在异常条件发生时将有明显的修正。在著名的Mackey-Glass时间序列上进行了仿真,验证了该预测系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grey-neural forecasting system
In this paper, a new nonlinear forecasting system using a grey predictor model and neural network tuner is proposed. This paper puts its emphasis on a few data and incomplete information to build the predictive system, excavates the connotative essence of a signal from the GM (1,1) predictor and refers to anomalistic (over predictive error) conditions to build the neural tuner database. So in the forecasting model the GM (1,1) model system predictive value will be appreciably modified while the anomalistic condition occurs. Simulation in well-known Mackey-Glass time series is presented to demonstrate the performance of the proposed predictive system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信