使用脉冲神经网络的认知处理

Jacob N. Allen, H. Abdel-Aty-Zohdy, R. Ewing
{"title":"使用脉冲神经网络的认知处理","authors":"Jacob N. Allen, H. Abdel-Aty-Zohdy, R. Ewing","doi":"10.1109/NAECON.2009.5426652","DOIUrl":null,"url":null,"abstract":"Powerful parallel cognitive processors can be developed by studying biologically plausible models of cognitive systems in animals and extrapolating key principles to be adapted for implementation in digital computer architectures. The network described here uses basic statistical methods such as proportion sampling on a massively parallel scale to create a general purpose pattern classifier. From these principles, we can achieve auto association and self organization that provides fundamental cognitive processing. Signal preprocessing is essential to transform the signal into a scale and rotation invariant binary pattern. The network avoids the curse of dimensionality by filtering out irrelevant inputs, allowing us to combine large sensor input vectors from multiple sources. Recent hardware designs define the network structure and state in memory, and then use accelerator processor cores to modify these memory structures in parallel.","PeriodicalId":305765,"journal":{"name":"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cognitive processing using spiking neural networks\",\"authors\":\"Jacob N. Allen, H. Abdel-Aty-Zohdy, R. Ewing\",\"doi\":\"10.1109/NAECON.2009.5426652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Powerful parallel cognitive processors can be developed by studying biologically plausible models of cognitive systems in animals and extrapolating key principles to be adapted for implementation in digital computer architectures. The network described here uses basic statistical methods such as proportion sampling on a massively parallel scale to create a general purpose pattern classifier. From these principles, we can achieve auto association and self organization that provides fundamental cognitive processing. Signal preprocessing is essential to transform the signal into a scale and rotation invariant binary pattern. The network avoids the curse of dimensionality by filtering out irrelevant inputs, allowing us to combine large sensor input vectors from multiple sources. Recent hardware designs define the network structure and state in memory, and then use accelerator processor cores to modify these memory structures in parallel.\",\"PeriodicalId\":305765,\"journal\":{\"name\":\"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2009.5426652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2009.5426652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

强大的并行认知处理器可以通过研究动物认知系统的生物学模型来开发,并推断出适用于数字计算机体系结构实现的关键原理。这里描述的网络使用基本的统计方法,如在大规模并行规模上的比例抽样来创建通用模式分类器。根据这些原则,我们可以实现提供基本认知处理的自动关联和自组织。信号预处理是将信号转换成尺度和旋转不变的二值模式的关键。该网络通过过滤掉不相关的输入,避免了维度的诅咒,允许我们组合来自多个来源的大型传感器输入向量。最近的硬件设计定义了存储器中的网络结构和状态,然后使用加速器处理器内核并行地修改这些存储器结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cognitive processing using spiking neural networks
Powerful parallel cognitive processors can be developed by studying biologically plausible models of cognitive systems in animals and extrapolating key principles to be adapted for implementation in digital computer architectures. The network described here uses basic statistical methods such as proportion sampling on a massively parallel scale to create a general purpose pattern classifier. From these principles, we can achieve auto association and self organization that provides fundamental cognitive processing. Signal preprocessing is essential to transform the signal into a scale and rotation invariant binary pattern. The network avoids the curse of dimensionality by filtering out irrelevant inputs, allowing us to combine large sensor input vectors from multiple sources. Recent hardware designs define the network structure and state in memory, and then use accelerator processor cores to modify these memory structures in parallel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信