{"title":"线性控制系统在时间尺度上的等价性","authors":"Z. Bartosiewicz, Ü. Kotta, Ewa Pawuszewicz","doi":"10.3176/phys.math.2006.1.04","DOIUrl":null,"url":null,"abstract":"The notions of transfer matrix, transfer equivalence, and i nput-output equivalence for linear control systems on time scales are introduced. These concepts generalize the cor- responding continuous- and discrete-time versions. Necessary and sufficient conditions for transfer and input-output equivalence are presented. As the main tool, an extension of the Laplace transform for functions defined on a time scale is use d.","PeriodicalId":308961,"journal":{"name":"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Equivalence of linear control systems on time scales\",\"authors\":\"Z. Bartosiewicz, Ü. Kotta, Ewa Pawuszewicz\",\"doi\":\"10.3176/phys.math.2006.1.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notions of transfer matrix, transfer equivalence, and i nput-output equivalence for linear control systems on time scales are introduced. These concepts generalize the cor- responding continuous- and discrete-time versions. Necessary and sufficient conditions for transfer and input-output equivalence are presented. As the main tool, an extension of the Laplace transform for functions defined on a time scale is use d.\",\"PeriodicalId\":308961,\"journal\":{\"name\":\"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3176/phys.math.2006.1.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3176/phys.math.2006.1.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Equivalence of linear control systems on time scales
The notions of transfer matrix, transfer equivalence, and i nput-output equivalence for linear control systems on time scales are introduced. These concepts generalize the cor- responding continuous- and discrete-time versions. Necessary and sufficient conditions for transfer and input-output equivalence are presented. As the main tool, an extension of the Laplace transform for functions defined on a time scale is use d.