一类由二阶偏微分方程描述的无条件稳定有限差分格式系统

P. Augusta, B. Cichy, K. Gałkowski, E. Rogers
{"title":"一类由二阶偏微分方程描述的无条件稳定有限差分格式系统","authors":"P. Augusta, B. Cichy, K. Gałkowski, E. Rogers","doi":"10.1109/NDS.2015.7332655","DOIUrl":null,"url":null,"abstract":"An unconditionally stable finite difference scheme for systems whose dynamics are described by a second-order partial differential equation is developed. The scheme is motivated by the well-known Crank-Nicolson discretization which was developed for first-order systems. The stability of the finite-difference scheme is analysed by von Neumann's method. Using the new scheme, a discrete in time and space model of a deformable mirror is derived as the basis for control law design. The convergence of this scheme for various values of the discretization parameters is checked by numerical simulations.","PeriodicalId":284922,"journal":{"name":"2015 IEEE 9th International Workshop on Multidimensional (nD) Systems (nDS)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An unconditionally stable finite difference scheme systems described by second order partial differential equations\",\"authors\":\"P. Augusta, B. Cichy, K. Gałkowski, E. Rogers\",\"doi\":\"10.1109/NDS.2015.7332655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An unconditionally stable finite difference scheme for systems whose dynamics are described by a second-order partial differential equation is developed. The scheme is motivated by the well-known Crank-Nicolson discretization which was developed for first-order systems. The stability of the finite-difference scheme is analysed by von Neumann's method. Using the new scheme, a discrete in time and space model of a deformable mirror is derived as the basis for control law design. The convergence of this scheme for various values of the discretization parameters is checked by numerical simulations.\",\"PeriodicalId\":284922,\"journal\":{\"name\":\"2015 IEEE 9th International Workshop on Multidimensional (nD) Systems (nDS)\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 9th International Workshop on Multidimensional (nD) Systems (nDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NDS.2015.7332655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 9th International Workshop on Multidimensional (nD) Systems (nDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NDS.2015.7332655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

建立了二阶偏微分方程系统的无条件稳定有限差分格式。该方案的动机是著名的Crank-Nicolson离散化,这是为一阶系统开发的。用冯诺依曼方法分析了有限差分格式的稳定性。在此基础上,推导了可变形镜的时空离散模型,作为控制律设计的基础。数值模拟验证了该格式对不同离散参数值的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An unconditionally stable finite difference scheme systems described by second order partial differential equations
An unconditionally stable finite difference scheme for systems whose dynamics are described by a second-order partial differential equation is developed. The scheme is motivated by the well-known Crank-Nicolson discretization which was developed for first-order systems. The stability of the finite-difference scheme is analysed by von Neumann's method. Using the new scheme, a discrete in time and space model of a deformable mirror is derived as the basis for control law design. The convergence of this scheme for various values of the discretization parameters is checked by numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信