存在数据零的最大似然几何

Elizabeth Gross, J. Rodriguez
{"title":"存在数据零的最大似然几何","authors":"Elizabeth Gross, J. Rodriguez","doi":"10.1145/2608628.2608659","DOIUrl":null,"url":null,"abstract":"Given a statistical model, the maximum likelihood degree is the number of complex solutions to the likelihood equations for generic data. We consider discrete algebraic statistical models and study the solutions to the likelihood equations when the data contain zeros and are no longer generic. Focusing on sampling and model zeros, we show that, in these cases, the solutions to the likelihood equations are contained in a previously studied variety, the likelihood correspondence. The number of these solutions give a lower bound on the ML degree, and the problem of finding critical points to the likelihood function can be partitioned into smaller and computationally easier problems involving sampling and model zeros. We use this technique to compute a lower bound on the ML degree for 2 x 2 x 2 x 2 tensors of border rank ≤ 2 and 3 x n tables of rank ≤ 2 for n = 11, 12, 13, 14, the first four values of n for which the ML degree was previously unknown.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Maximum likelihood geometry in the presence of data zeros\",\"authors\":\"Elizabeth Gross, J. Rodriguez\",\"doi\":\"10.1145/2608628.2608659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a statistical model, the maximum likelihood degree is the number of complex solutions to the likelihood equations for generic data. We consider discrete algebraic statistical models and study the solutions to the likelihood equations when the data contain zeros and are no longer generic. Focusing on sampling and model zeros, we show that, in these cases, the solutions to the likelihood equations are contained in a previously studied variety, the likelihood correspondence. The number of these solutions give a lower bound on the ML degree, and the problem of finding critical points to the likelihood function can be partitioned into smaller and computationally easier problems involving sampling and model zeros. We use this technique to compute a lower bound on the ML degree for 2 x 2 x 2 x 2 tensors of border rank ≤ 2 and 3 x n tables of rank ≤ 2 for n = 11, 12, 13, 14, the first four values of n for which the ML degree was previously unknown.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

给定一个统计模型,最大似然度是一般数据的似然方程的复解的个数。我们考虑离散代数统计模型,并研究当数据包含零且不再是泛型时的似然方程的解。关注采样和模型零,我们表明,在这些情况下,似然方程的解包含在先前研究的变量中,即似然对应。这些解决方案的数量给出了ML度的下界,并且找到似然函数的临界点的问题可以划分为涉及采样和模型零的更小且计算更容易的问题。我们使用这种技术来计算边界秩≤2和秩≤2的3 × n个表的2 × 2 × 2 × 2张量的ML度的下界,其中n = 11,12,13,14, n的前四个值的ML度以前是未知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum likelihood geometry in the presence of data zeros
Given a statistical model, the maximum likelihood degree is the number of complex solutions to the likelihood equations for generic data. We consider discrete algebraic statistical models and study the solutions to the likelihood equations when the data contain zeros and are no longer generic. Focusing on sampling and model zeros, we show that, in these cases, the solutions to the likelihood equations are contained in a previously studied variety, the likelihood correspondence. The number of these solutions give a lower bound on the ML degree, and the problem of finding critical points to the likelihood function can be partitioned into smaller and computationally easier problems involving sampling and model zeros. We use this technique to compute a lower bound on the ML degree for 2 x 2 x 2 x 2 tensors of border rank ≤ 2 and 3 x n tables of rank ≤ 2 for n = 11, 12, 13, 14, the first four values of n for which the ML degree was previously unknown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信