A. Harlap, Alexey Tumanov, Andrew Chung, G. Ganger, Phillip B. Gibbons
{"title":"Proteus:在动态资源市场中通过分层可靠性实现敏捷ML弹性","authors":"A. Harlap, Alexey Tumanov, Andrew Chung, G. Ganger, Phillip B. Gibbons","doi":"10.1145/3064176.3064182","DOIUrl":null,"url":null,"abstract":"Many shared computing clusters allow users to utilize excess idle resources at lower cost or priority, with the proviso that some or all may be taken away at any time. But, exploiting such dynamic resource availability and the often fluctuating markets for them requires agile elasticity and effective acquisition strategies. Proteus aggressively exploits such transient revocable resources to do machine learning (ML) cheaper and/or faster. Its parameter server framework, AgileML, efficiently adapts to bulk additions and revocations of transient machines, through a novel 3-stage active-backup approach, with minimal use of more costly non-transient resources. Its BidBrain component adaptively allocates resources from multiple EC2 spot markets to minimize average cost per work as transient resource availability and cost change over time. Our evaluations show that Proteus reduces cost by 85% relative to non-transient pricing, and by 43% relative to previous approaches, while simultaneously reducing runtimes by up to 37%.","PeriodicalId":262089,"journal":{"name":"Proceedings of the Twelfth European Conference on Computer Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Proteus: agile ML elasticity through tiered reliability in dynamic resource markets\",\"authors\":\"A. Harlap, Alexey Tumanov, Andrew Chung, G. Ganger, Phillip B. Gibbons\",\"doi\":\"10.1145/3064176.3064182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many shared computing clusters allow users to utilize excess idle resources at lower cost or priority, with the proviso that some or all may be taken away at any time. But, exploiting such dynamic resource availability and the often fluctuating markets for them requires agile elasticity and effective acquisition strategies. Proteus aggressively exploits such transient revocable resources to do machine learning (ML) cheaper and/or faster. Its parameter server framework, AgileML, efficiently adapts to bulk additions and revocations of transient machines, through a novel 3-stage active-backup approach, with minimal use of more costly non-transient resources. Its BidBrain component adaptively allocates resources from multiple EC2 spot markets to minimize average cost per work as transient resource availability and cost change over time. Our evaluations show that Proteus reduces cost by 85% relative to non-transient pricing, and by 43% relative to previous approaches, while simultaneously reducing runtimes by up to 37%.\",\"PeriodicalId\":262089,\"journal\":{\"name\":\"Proceedings of the Twelfth European Conference on Computer Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3064176.3064182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3064176.3064182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proteus: agile ML elasticity through tiered reliability in dynamic resource markets
Many shared computing clusters allow users to utilize excess idle resources at lower cost or priority, with the proviso that some or all may be taken away at any time. But, exploiting such dynamic resource availability and the often fluctuating markets for them requires agile elasticity and effective acquisition strategies. Proteus aggressively exploits such transient revocable resources to do machine learning (ML) cheaper and/or faster. Its parameter server framework, AgileML, efficiently adapts to bulk additions and revocations of transient machines, through a novel 3-stage active-backup approach, with minimal use of more costly non-transient resources. Its BidBrain component adaptively allocates resources from multiple EC2 spot markets to minimize average cost per work as transient resource availability and cost change over time. Our evaluations show that Proteus reduces cost by 85% relative to non-transient pricing, and by 43% relative to previous approaches, while simultaneously reducing runtimes by up to 37%.